Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
  • 1
    In: SoftwareX, Elsevier BV, Vol. 13 ( 2021-01), p. 100658-
    Type of Medium: Online Resource
    ISSN: 2352-7110
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 2819369-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 1997
    In:  Canadian Journal of Anaesthesia Vol. 44, No. S1 ( 1997-5), p. A3-A73
    In: Canadian Journal of Anaesthesia, Springer Science and Business Media LLC, Vol. 44, No. S1 ( 1997-5), p. A3-A73
    Type of Medium: Online Resource
    ISSN: 0832-610X , 1496-8975
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 1997
    detail.hit.zdb_id: 2050416-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: The Lancet Neurology, Elsevier BV, Vol. 18, No. 7 ( 2019-07), p. 643-652
    Type of Medium: Online Resource
    ISSN: 1474-4422
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Applied Optics, Optica Publishing Group, Vol. 60, No. 13 ( 2021-05-01), p. 4047-
    Abstract: Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nanometer scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduce the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power buildup in second generation gravitational wave detectors (dual-recycled Fabry–Perot Michelson interferometers). This analysis predicts that the power-dependent reduction in interferometer performance will significantly degrade maximum stored power by up to 50% and, hence, limit GW sensitivity, but it suggests system wide corrections that can be implemented in current and future GW detectors. This is particularly pressing given that future GW detectors call for an order of magnitude more stored power than currently used in Advanced LIGO in Observing Run 3. We briefly review strategies to mitigate the effects of point absorbers in current and future GW wave detectors to maximize the success of these enterprises.
    Type of Medium: Online Resource
    ISSN: 1559-128X , 2155-3165
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2021
    detail.hit.zdb_id: 207387-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Bulletin of the American Meteorological Society Vol. 104, No. 9 ( 2023-09), p. S1-S10
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 104, No. 9 ( 2023-09), p. S1-S10
    Abstract: —J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases. In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022. Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record. While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia. The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations. In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old. In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February. Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded. A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported. As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items. In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities. On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Surgery for Obesity and Related Diseases, Elsevier BV, Vol. 17, No. 10 ( 2021-10), p. 1787-1798
    Type of Medium: Online Resource
    ISSN: 1550-7289
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 52, No. 5 ( 2020-05), p. 494-504
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 1494946-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Space Science Reviews, Springer Science and Business Media LLC, Vol. 167, No. 1-4 ( 2012-5), p. 93-140
    Type of Medium: Online Resource
    ISSN: 0038-6308 , 1572-9672
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2012
    detail.hit.zdb_id: 2017804-9
    detail.hit.zdb_id: 2561549-X
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: IUPHAR/BPS Guide to Pharmacology CITE, Edinburgh University Library, Vol. 2019, No. 4 ( 2019-09-16)
    Abstract: The TRP superfamily of channels (nomenclature as agreed by NC-IUPHAR [145, 915]), whose founder member is the Drosophila Trp channel, exists in mammals as six families; TRPC, TRPM, TRPV, TRPA, TRPP and TRPML based on amino acid homologies. TRP subunits contain six putative transmembrane domains and assemble as homo- or hetero-tetramers to form cation selective channels with diverse modes of activation and varied permeation properties (reviewed by [630] ). Established, or potential, physiological functions of the individual members of the TRP families are discussed in detail in the recommended reviews and in a number of books [344, 589, 979, 216] . The established, or potential, involvement of TRP channels in disease is reviewed in [384, 588] and [591] , together with a special edition of Biochemica et Biophysica Acta on the subject [588]. Additional disease related reviews, for pain [542] , stroke [967], sensation and inflammation [843] , itch [109], and airway disease [261, 896] , are available. The pharmacology of most TRP channels has been advanced in recent years. Broad spectrum agents are listed in the tables along with more selective, or recently recognised, ligands that are flagged by the inclusion of a primary reference. See Rubaiy (2019) for a review of pharmacological tools for TRPC1/C4/C5 channels [692]. Most TRP channels are regulated by phosphoinostides such as PtIns(4,5)P2 although the effects reported are often complex, occasionally contradictory, and likely to be dependent upon experimental conditions, such as intracellular ATP levels (reviewed by [862, 592, 689] ). Such regulation is generally not included in the tables.When thermosensitivity is mentioned, it refers specifically to a high Q10 of gating, often in the range of 10-30, but does not necessarily imply that the channel's function is to act as a 'hot' or 'cold' sensor. In general, the search for TRP activators has led to many claims for temperature sensing, mechanosensation, and lipid sensing. All proteins are of course sensitive to energies of binding, mechanical force, and temperature, but the issue is whether the proposed input is within a physiologically relevant range resulting in a response. TRPA (ankyrin) familyTRPA1 is the sole mammalian member of this group (reviewed by [246]). TRPA1 activation of sensory neurons contribute to nociception [356, 763, 516] . Pungent chemicals such as mustard oil (AITC), allicin, and cinnamaldehyde activate TRPA1 by modification of free thiol groups of cysteine side chains, especially those located in its amino terminus [491, 47, 311, 493]. Alkenals with α, β-unsaturated bonds, such as propenal (acrolein), butenal (crotylaldehyde), and 2-pentenal can react with free thiols via Michael addition and can activate TRPA1. However, potency appears to weaken as carbon chain length increases [21, 47] . Covalent modification leads to sustained activation of TRPA1. Chemicals including carvacrol, menthol, and local anesthetics reversibly activate TRPA1 by non-covalent binding [364, 438, 923, 922]. TRPA1 is not mechanosensitive under physiological conditions, but can be activated by cold temperatures [365, 175] . The electron cryo-EM structure of TRPA1 [639] indicates that it is a 6-TM homotetramer. Each subunit of the channel contains two short ‘pore helices’ pointing into the ion selectivity filter, which is big enough to allow permeation of partially hydrated Ca2+ ions. TRPC (canonical) familyMembers of the TRPC subfamily (reviewed by [239, 673, 14, 4, 79, 382, 638, 55] ) fall into the subgroups outlined below. TRPC2 is a pseudogene in humans. It is generally accepted that all TRPC channels are activated downstream of Gq/11-coupled receptors, or receptor tyrosine kinases (reviewed by [661, 814, 915]). A comprehensive listing of G-protein coupled receptors that activate TRPC channels is given in [4] . Hetero-oligomeric complexes of TRPC channels and their association with proteins to form signalling complexes are detailed in [14] and [383] . TRPC channels have frequently been proposed to act as store-operated channels (SOCs) (or compenents of mulimeric complexes that form SOCs), activated by depletion of intracellular calcium stores (reviewed by [640, 14, 665, 703, 954, 132, 626, 51, 133]). However, the weight of the evidence is that they are not directly gated by conventional store-operated mechanisms, as established for Stim-gated Orai channels. TRPC channels are not mechanically gated in physiologically relevant ranges of force. All members of the TRPC family are blocked by 2-APB and SKF96365 [295, 294] . Activation of TRPC channels by lipids is discussed by [55]. Important progress has been recently made in TRPC pharmacology [692, 529, 372, 87] . TRPC channels regulate a variety of physiological functions and are implicated in many human diseases [248, 56, 759, 879]. TRPC1/C4/C5 subgroup TRPC1 alone may not form a functional ion channel [191] . TRPC4/C5 may be distinguished from other TRP channels by their potentiation by micromolar concentrations of La3+. TRPC2 is a pseudogene in humans, but in other mammals appears to be an ion channel localized to microvilli of the vomeronasal organ. It is required for normal sexual behavior in response to pheromones in mice. It may also function in the main olfactory epithelia in mice [951, 625, 624, 952, 462, 988, 947].TRPC3/C6/C7 subgroup All members are activated by diacylglycerol independent of protein kinase C stimulation [295] .TRPM (melastatin) familyMembers of the TRPM subfamily (reviewed by [230, 294, 640, 978]) fall into the five subgroups outlined below. TRPM1/M3 subgroupIn darkness, glutamate released by the photoreceptors and ON-bipolar cells binds to the metabotropic glutamate receptor 6 , leading to activation of Go . This results in the closure of TRPM1. When the photoreceptors are stimulated by light, glutamate release is reduced, and TRPM1 channels are more active, resulting in cell membrane depolarization. Human TRPM1 mutations are associated with congenital stationary night blindness (CSNB), whose patients lack rod function. TRPM1 is also found melanocytes. Isoforms of TRPM1 may present in melanocytes, melanoma, brain, and retina. In melanoma cells, TRPM1 is prevalent in highly dynamic intracellular vesicular structures [341, 609] . TRPM3 (reviewed by [615]) exists as multiple splice variants which differ significantly in their biophysical properties. TRPM3 is expressed in somatosensory neurons and may be important in development of heat hyperalgesia during inflammation (see review [803] ). TRPM3 is frequently coexpressed with TRPA1 and TRPV1 in these neurons. TRPM3 is expressed in pancreatic beta cells as well as brain, pituitary gland, eye, kidney, and adipose tissue [614, 802]. TRPM3 may contribute to the detection of noxious heat [870] .TRPM2TRPM2 is activated under conditions of oxidative stress (respiratory burst of phagocytic cells) and ischemic conditions. However, the direct activators are ADPR(P) and calcium. As for many ion channels, PIP2 must also be present (reviewed by [935]). Numerous splice variants of TRPM2 exist which differ in their activation mechanisms [200] . The C-terminal domain contains a TRP motif, a coiled-coil region, and an enzymatic NUDT9 homologous domain. TRPM2 appears not to be activated by NAD, NAAD, or NAADP, but is directly activated by ADPRP (adenosine-5'-O-disphosphoribose phosphate) [827]. TRPM2 is involved in warmth sensation [724] , and contributes to neurological diseases [61]. Recent study shows that 2'-deoxy-ADPR is an endogenous TRPM2 superagonist [231] . TRPM4/5 subgroupTRPM4 and TRPM5 have the distinction within all TRP channels of being impermeable to Ca2+ [915]. A splice variant of TRPM4 (i.e.TRPM4b) and TRPM5 are molecular candidates for endogenous calcium-activated cation (CAN) channels [278] . TRPM4 is active in the late phase of repolarization of the cardiac ventricular action potential. TRPM4 deletion or knockout enhances beta adrenergic-mediated inotropy [507]. Mutations are associated with conduction defects [347, 507, 753] . TRPM4 has been shown to be an important regulator of Ca2+ entry in to mast cells [847] and dendritic cell migration [39] . TRPM5 in taste receptor cells of the tongue appears essential for the transduction of sweet, amino acid and bitter stimuli [460] TRPM5 contributes to the slow afterdepolarization of layer 5 neurons in mouse prefrontal cortex [439] . Both TRPM4 and TRPM5 are required transduction of taste stimuli [206].TRPM6/7 subgroupTRPM6 and 7 combine channel and enzymatic activities (‘chanzymes’). These channels have the unusual property of permeation by divalent (Ca2+, Mg2+, Zn2+) and monovalent cations, high single channel conductances, but overall extremely small inward conductance when expressed to the plasm a membrane. They are inhibited by internal Mg2+ at ~0.6 mM, around the free level of Mg2+ in cells. Whether they contribute to Mg2+ homeostasis is a contentious issue. When either gene is deleted in mice, the result is embryonic lethality. The C-terminal kinase region is cleaved under unknown stimuli, and the kinase phosphorylates nuclear histones. TRPM7 is responsible for oxidant- induced Zn2+ release from intracellular vesicles [3] and contributes to intestinal mineral absorption essential for postnatal survival [532] . TRPM8Is a channel activated by cooling and pharmacological agents evoking a ‘cool’ sensation and participates in the thermosensation of cold temperatures [50, 147, 186] reviewed by [864, 481, 391, 556] . TRPML (mucolipin) familyThe TRPML family [676, 964, 670, 926, 156] consists of three mammalian members (TRPML1-3). TRPML channels are probably restricted to intracellular vesicles and mutations in the gene (MCOLN1) encoding TRPML1 (mucolipin-1) cause the neurodegenerative disorder mucolipidosis type IV (MLIV) in man. TRPML1 is a cation selective ion channel that is important for sorting/transport of endosomes in the late endocytotic pathway and specifically, fission from late endosome-lysosome hybrid vesicles and lysosomal exocytosis [704] . TRPML2 and TRPML3 show increased channel activity in low extracellular sodium and are activated by similar small molecules [270]. A naturally occurring gain of function mutation in TRPML3 (i.e. A419P) results in the varitint waddler (Va) mouse phenotype (reviewed by [676, 593] ). TRPP (polycystin) familyThe TRPP family (reviewed by [179, 177, 252, 905, 320]) or PKD2 family is comprised of PKD2 (PC2), PKD2L1 (PC2L1), PKD2L2 (PC2L2), which have been renamed TRPP1, TRPP2 and TRPP3, respectively [915] . It should also be noted that the nomenclature of PC2 was TRPP2 in old literature. However, PC2 has been uniformed to be called TRPP2 [293]. PKD2 family channels are clearly distinct from the PKD1 family, whose function is unknown. PKD1 and PKD2 form a hetero-oligomeric complex with a 1:3 ratio. [775] . Although still being sorted out, TRPP family members appear to be 6TM spanning nonselective cation channels. TRPV (vanilloid) familyMembers of the TRPV family (reviewed by [849]) can broadly be divided into the non-selective cation channels, TRPV1-4 and the more calcium selective channels TRPV5 and TRPV6.TRPV1-V4 subfamilyTRPV1 is involved in the development of thermal hyperalgesia following inflammation and may contribute to the detection of noxius heat (reviewed by [660, 756, 786] ). Numerous splice variants of TRPV1 have been described, some of which modulate the activity of TRPV1, or act in a dominant negative manner when co-expressed with TRPV1 [722]. The pharmacology of TRPV1 channels is discussed in detail in [280] and [868]. TRPV2 is probably not a thermosensor in man [635] , but has recently been implicated in innate immunity [469]. TRPV3 and TRPV4 are both thermosensitive. There are claims that TRPV4 is also mechanosensitive, but this has not been established to be within a physiological range in a native environment [106, 454] .TRPV5/V6 subfamily TRPV5 and TRPV6 are highly expressed in placenta, bone, and kidney. Under physiological conditions, TRPV5 and TRPV6 are calcium selective channels involved in the absorption and reabsorption of calcium across intestinal and kidney tubule epithelia (reviewed by [901, 168, 558, 227]).
    Type of Medium: Online Resource
    ISSN: 2633-1020
    Language: Unknown
    Publisher: Edinburgh University Library
    Publication Date: 2019
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: IUPHAR/BPS Guide to Pharmacology CITE, Edinburgh University Library, Vol. 2022, No. 1 ( 2022-03-31)
    Abstract: The TRP superfamily of channels (nomenclature as agreed by NC-IUPHAR [159, 999]), whose founder member is the Drosophila Trp channel, exists in mammals as six families; TRPC, TRPM, TRPV, TRPA, TRPP and TRPML based on amino acid homologies. TRP subunits contain six putative TM domains and assemble as homo- or hetero-tetramers to form cation selective channels with diverse modes of activation and varied permeation properties (reviewed by [679] ). Established, or potential, physiological functions of the individual members of the TRP families are discussed in detail in the recommended reviews and in a number of books [371, 635, 1066, 236]. The established, or potential, involvement of TRP channels in disease is reviewed in [412, 634] and [637], together with a special edition of Biochemica et Biophysica Acta on the subject [634] . Additional disease related reviews, for pain [585], stroke [1052] , sensation and inflammation [921], itch [117] , and airway disease [284, 979], are available. The pharmacology of most TRP channels has been advanced in recent years. Broad spectrum agents are listed in the tables along with more selective, or recently recognised, ligands that are flagged by the inclusion of a primary reference. See Rubaiy (2019) for a review of pharmacological tools for TRPC1/C4/C5 channels [751] . Most TRP channels are regulated by phosphoinostides such as PtIns(4,5)P2 although the effects reported are often complex, occasionally contradictory, and likely to be dependent upon experimental conditions, such as intracellular ATP levels (reviewed by [941, 638, 747]). Such regulation is generally not included in the tables.When thermosensitivity is mentioned, it refers specifically to a high Q10 of gating, often in the range of 10-30, but does not necessarily imply that the channel's function is to act as a 'hot' or 'cold' sensor. In general, the search for TRP activators has led to many claims for temperature sensing, mechanosensation, and lipid sensing. All proteins are of course sensitive to energies of binding, mechanical force, and temperature, but the issue is whether the proposed input is within a physiologically relevant range resulting in a response. TRPA (ankyrin) familyTRPA1 is the sole mammalian member of this group (reviewed by [268] ). TRPA1 activation of sensory neurons contribute to nociception [382, 831, 555]. Pungent chemicals such as mustard oil (AITC), allicin, and cinnamaldehyde activate TRPA1 by modification of free thiol groups of cysteine side chains, especially those located in its amino terminus [529, 51, 336, 531] . Alkenals with α, β-unsaturated bonds, such as propenal (acrolein), butenal (crotylaldehyde), and 2-pentenal can react with free thiols via Michael addition and can activate TRPA1. However, potency appears to weaken as carbon chain length increases [23, 51]. Covalent modification leads to sustained activation of TRPA1. Chemicals including carvacrol, menthol, and local anesthetics reversibly activate TRPA1 by non-covalent binding [391, 470, 1007, 1006] . TRPA1 is not mechanosensitive under physiological conditions, but can be activated by cold temperatures [392, 193]. The electron cryo-EM structure of TRPA1 [688] indicates that it is a 6-TM homotetramer. Each subunit of the channel contains two short ‘pore helices’ pointing into the ion selectivity filter, which is big enough to allow permeation of partially hydrated Ca2+ ions. TRPC (canonical) familyMembers of the TRPC subfamily (reviewed by [261, 726, 15, 4, 84, 410, 687, 60]) fall into the subgroups outlined below. TRPC2 is a pseudogene in humans. It is generally accepted that all TRPC channels are activated downstream of Gq/11-coupled receptors, or receptor tyrosine kinases (reviewed by [713, 889, 999] ). A comprehensive listing of G-protein coupled receptors that activate TRPC channels is given in [4]. Hetero-oligomeric complexes of TRPC channels and their association with proteins to form signalling complexes are detailed in [15] and [411]. TRPC channels have frequently been proposed to act as store-operated channels (SOCs) (or compenents of mulimeric complexes that form SOCs), activated by depletion of intracellular calcium stores (reviewed by [689, 15, 718, 765, 1039, 141, 675, 55, 142] ). However, the weight of the evidence is that they are not directly gated by conventional store-operated mechanisms, as established for Stim-gated Orai channels. TRPC channels are not mechanically gated in physiologically relevant ranges of force. All members of the TRPC family are blocked by 2-APB and SKF96365 [319, 318] . Activation of TRPC channels by lipids is discussed by [60]. Important progress has been recently made in TRPC pharmacology [751, 571, 400, 92] . TRPC channels regulate a variety of physiological functions and are implicated in many human diseases [270, 61, 827, 960]. TRPC1/C4/C5 subgroup TRPC1 alone may not form a functional ion channel [210] . TRPC4/C5 may be distinguished from other TRP channels by their potentiation by micromolar concentrations of La3+. TRPC2 is a pseudogene in humans, but in other mammals appears to be an ion channel localized to microvilli of the vomeronasal organ. It is required for normal sexual behavior in response to pheromones in mice. It may also function in the main olfactory epithelia in mice [1036, 672, 673, 1037, 496, 1077, 1032].TRPC3/C6/C7 subgroup All members are activated by diacylglycerol independent of protein kinase C stimulation [319] .TRPM (melastatin) familyMembers of the TRPM subfamily (reviewed by [252, 318, 689, 1064]) fall into the five subgroups outlined below. TRPM1/M3 subgroupIn darkness, glutamate released by the photoreceptors and ON-bipolar cells binds to the metabotropic glutamate receptor 6 , leading to activation of Go . This results in the closure of TRPM1. When the photoreceptors are stimulated by light, glutamate release is reduced, and TRPM1 channels are more active, resulting in cell membrane depolarization. Human TRPM1 mutations are associated with congenital stationary night blindness (CSNB), whose patients lack rod function. TRPM1 is also found melanocytes. Isoforms of TRPM1 may present in melanocytes, melanoma, brain, and retina. In melanoma cells, TRPM1 is prevalent in highly dynamic intracellular vesicular structures [368, 657] . TRPM3 (reviewed by [663]) exists as multiple splice variants which differ significantly in their biophysical properties. TRPM3 is expressed in somatosensory neurons and may be important in development of heat hyperalgesia during inflammation (see review [878] ). TRPM3 is frequently coexpressed with TRPA1 and TRPV1 in these neurons. TRPM3 is expressed in pancreatic beta cells as well as brain, pituitary gland, eye, kidney, and adipose tissue [662, 877]. TRPM3 may contribute to the detection of noxious heat [949] .TRPM2TRPM2 is activated under conditions of oxidative stress (respiratory burst of phagocytic cells) and ischemic conditions. However, the direct activators are ADPR(P) and calcium. As for many ion channels, PIP2 must also be present (reviewed by [1020]). Numerous splice variants of TRPM2 exist which differ in their activation mechanisms [219] . The C-terminal domain contains a TRP motif, a coiled-coil region, and an enzymatic NUDT9 homologous domain. TRPM2 appears not to be activated by NAD, NAAD, or NAADP, but is directly activated by ADPRP (adenosine-5'-O-disphosphoribose phosphate) [902]. TRPM2 is involved in warmth sensation [789] , and contributes to neurological diseases [66]. Recent study shows that 2'-deoxy-ADPR is an endogenous TRPM2 superagonist [253] . TRPM4/5 subgroupTRPM4 and TRPM5 have the distinction within all TRP channels of being impermeable to Ca2+ [999]. A splice variant of TRPM4 (i.e.TRPM4b) and TRPM5 are molecular candidates for endogenous calcium-activated cation (CAN) channels [301] . TRPM4 is active in the late phase of repolarization of the cardiac ventricular action potential. TRPM4 deletion or knockout enhances beta adrenergic-mediated inotropy [546]. Mutations are associated with conduction defects [374, 546, 821] . TRPM4 has been shown to be an important regulator of Ca2+ entry in to mast cells [926] and dendritic cell migration [43] . TRPM5 in taste receptor cells of the tongue appears essential for the transduction of sweet, amino acid and bitter stimuli [494] TRPM5 contributes to the slow afterdepolarization of layer 5 neurons in mouse prefrontal cortex [471] . Both TRPM4 and TRPM5 are required transduction of taste stimuli [226].TRPM6/7 subgroupTRPM6 and 7 combine channel and enzymatic activities (‘chanzymes’). These channels have the unusual property of permeation by divalent (Ca2+, Mg2+, Zn2+) and monovalent cations, high single channel conductances, but overall extremely small inward conductance when expressed to the plasma membrane. They are inhibited by internal Mg2+ at ~0.6 mM, around the free level of Mg2+ in cells. Whether they contribute to Mg2+ homeostasis is a contentious issue. When either gene is deleted in mice, the result is embryonic lethality. The C-terminal kinase region is cleaved under unknown stimuli, and the kinase phosphorylates nuclear histones. TRPM7 is responsible for oxidant- induced Zn2+ release from intracellular vesicles [3] and contributes to intestinal mineral absorption essential for postnatal survival [574]. TRPM8Is a channel activated by cooling and pharmacological agents evoking a ‘cool’ sensation and participates in the thermosensation of cold temperatures [54, 161, 205] reviewed by [943, 516, 420, 599]. TRPML (mucolipin) familyThe TRPML family [729, 1049, 723, 1010, 173] consists of three mammalian members (TRPML1-3). TRPML channels are probably restricted to intracellular vesicles and mutations in the gene (MCOLN1) encoding TRPML1 (mucolipin-1) cause the neurodegenerative disorder mucolipidosis type IV (MLIV) in man. TRPML1 is a cation selective ion channel that is important for sorting/transport of endosomes in the late endocytotic pathway and specifically, fission from late endosome-lysosome hybrid vesicles and lysosomal exocytosis [766]. TRPML2 and TRPML3 show increased channel activity in low extracellular sodium and are activated by similar small molecules [293] . A naturally occurring gain of function mutation in TRPML3 (i.e. A419P) results in the varitint waddler (Va) mouse phenotype (reviewed by [729, 639]). TRPP (polycystin) familyThe TRPP family (reviewed by [197, 195, 275, 988, 345] ) or PKD2 family is comprised of PKD2 (PC2), PKD2L1 (PC2L1), PKD2L2 (PC2L2), which have been renamed TRPP1, TRPP2 and TRPP3, respectively [999]. It should also be noted that the nomenclature of PC2 was TRPP2 in old literature. However, PC2 has been uniformed to be called TRPP2 [317] . PKD2 family channels are clearly distinct from the PKD1 family, whose function is unknown. PKD1 and PKD2 form a hetero-oligomeric complex with a 1:3 ratio. [845]. Although still being sorted out, TRPP family members appear to be 6TM spanning nonselective cation channels. TRPV (vanilloid) familyMembers of the TRPV family (reviewed by [928] ) can broadly be divided into the non-selective cation channels, TRPV1-4 and the more calcium selective channels TRPV5 and TRPV6.TRPV1-V4 subfamilyTRPV1 is involved in the development of thermal hyperalgesia following inflammation and may contribute to the detection of noxius heat (reviewed by [710, 824, 860]). Numerous splice variants of TRPV1 have been described, some of which modulate the activity of TRPV1, or act in a dominant negative manner when co-expressed with TRPV1 [787] . The pharmacology of TRPV1 channels is discussed in detail in [303] and [947] . TRPV2 is probably not a thermosensor in man [684], but has recently been implicated in innate immunity [503] . TRPV3 and TRPV4 are both thermosensitive. There are claims that TRPV4 is also mechanosensitive, but this has not been established to be within a physiological range in a native environment [114, 488].TRPV5/V6 subfamily TRPV5 and TRPV6 are highly expressed in placenta, bone, and kidney. Under physiological conditions, TRPV5 and TRPV6 are calcium selective channels involved in the absorption and reabsorption of calcium across intestinal and kidney tubule epithelia (reviewed by [984, 185, 601, 248] ).
    Type of Medium: Online Resource
    ISSN: 2633-1020
    Language: Unknown
    Publisher: Edinburgh University Library
    Publication Date: 2022
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages