Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2017
    In:  Frontiers in Plant Science Vol. 8 ( 2017-03-03)
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 8 ( 2017-03-03)
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2017
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Annals of Botany, Oxford University Press (OUP), Vol. 116, No. 4 ( 2015-09), p. 529-540
    Type of Medium: Online Resource
    ISSN: 0305-7364 , 1095-8290
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2015
    detail.hit.zdb_id: 1461328-1
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2018-12-21)
    Abstract: The polycomb repressive complex 2 (PRC2) regulates epigenetic gene repression in eukaryotes. Mechanisms controlling its developmental specificity and signal-responsiveness are poorly understood. Here, we identify an oxygen-sensitive N-terminal (N-) degron in the plant PRC2 subunit VERNALIZATION(VRN) 2, a homolog of animal Su(z)12, that promotes its degradation via the N-end rule pathway. We provide evidence that this N-degron arose early during angiosperm evolution via gene duplication and N-terminal truncation, facilitating expansion of PRC2 function in flowering plants. We show that proteolysis via the N-end rule pathway prevents ectopic VRN2 accumulation, and that hypoxia and long-term cold exposure lead to increased VRN2 abundance, which we propose may be due to inhibition of VRN2 turnover via its N-degron. Furthermore, we identify an overlap in the transcriptional responses to hypoxia and prolonged cold, and show that VRN2 promotes tolerance to hypoxia. Our work reveals a mechanism for post-translational regulation of VRN2 stability that could potentially link environmental inputs to the epigenetic control of plant development.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2553671-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. DDT02-04-DDT02-04
    Abstract: PRMT5 is a type II methyltransferase that specifically adds methyl groups to arginine as a long-lasting post-translational modification. The PRMT5/MEP50 complex regulates a plethora of cellular processes, such as epigenetics and splicing, which are notable events involved in tumorigenesis. Although not frequently mutated or amplified in tumors, elevated PRMT5 protein levels in lung and hematologic cancers are correlated with poorer survival. The PRMT5 inhibitor JNJ-64619178 has been selected as a clinical candidate based on its high selectivity and potency (subnanomolar range) under different in vitro and cellular conditions, paired with favorable pharmacokinetics and safety properties. JNJ-64619178 binds into the SAM binding pocket and reaches the substrate binding pocket to inhibit PRMT5/MEP50 function in a time-dependent manner. Broad cell line panel profiling of JNJ-64619178 revealed a wide range of sensitivity, which is indicative of a genomic dependency instead of a general cytotoxic on-target consequence of PRMT5 inhibition. Further investigations indicate a synthetic lethal correlation between PRMT5 inhibition and key cancer driver pathways. JNJ-64619178, dosed orally (10 mg/kg, every day), showed selective and efficient blockage of the methylation of SMD1/3 proteins, which are crucial components of the spliceosome and substrates of PRMT5/MEP50. JNJ-64619178 also demonstrated tumor regression in a biomarker-driven human small cell lung cancer xenograft model (NCI-H1048) and prolonged tumor growth inhibition after dosing cessation. In rodent and nonrodent toxicology studies, a tolerated dose of JNJ-64619178 has been identified, with the observed toxicity consistent with on-target activity. In summary, JNJ-64619178 has a favorable preclinical package that supports clinical testing in patients diagnosed with lung cancer and hematologic malignancies. Citation Format: Dirk Brehmer, Tongfei Wu, Geert Mannens, Lijs Beke, Petra Vinken, Dana Gaffney, Weimei Sun, Vineet Pande, Jan-Willem Thuring, Hillary Millar, Italo Poggesi, Ivan Somers, An Boeckx, Marc Parade, Erika van Heerde, Thomas Nys, Carol Yanovich, Barbara Herkert, Tinne Verhulst, Marc Du Jardin, Lieven Meerpoel, Christopher Moy, Gaston Diels, Marcel Viellevoye, Wim Schepens, Alain Poncelet, Joannes T. Linders, Edward C. Lawson, James P. Edwards, Dushen Chetty, Sylvie Laquerre, Matthew V. Lorenzi. A novel PRMT5 inhibitor with potent in vitro and in vivo activity in preclinical lung cancer models [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr DDT02-04. doi:10.1158/1538-7445.AM2017-DDT02-04
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 3905-3905
    Abstract: Protein arginine methyltransferase 5 (PRMT5) is an epigenetic enzyme with oncogenic properties. JNJ-64619178 (JNJ178) is a potent, selective, structurally unique PRMT5 inhibitor with good preclinical efficacy in inhibiting the growth of hematologic and solid tumor cell lines. Toxicology studies showed that JNJ178 decreased reticulocytes and neutrophils in rats and dogs. The objectives of translational modeling and simulation were to understand the exposure-response relationship of both safety and efficacy and provide guidance to the first-in-human clinical development of JNJ178. Experimental data for the PK/PD (Pharmacokinetics/Pharmacodynamics) modeling included: plasma concentration after single dose of JNJ178 in non-tumor bearing mice, plasma concentration and PD markers of dimethylation of arginine (%SDMA in plasma and %SMD1/3-Me2 in tumor, respectively) after multiple doses (1 to 10 mg/kg) QD (once daily) of JNJ178 in H1048 (human small cell lung carcinoma) xenografts, and tumor volume in four xenograft mouse models (A427, human lung carcinoma; H441, human lung adenocarcinoma; H520, human squamous cell lung carcinoma; and H1048). Plasma PK were first described by a standard two-compartment model and used as a driver of PD and tumor volume (efficacy). Plasma and tumor PD were modeled using an indirect response model. A hybrid tumor growth coupled with transit compartment mediated tumor killing model was used to fit the tumor volume data. To predict the safety profile of JNJ178, lifespan based indirect response model for erythropoiesis and Friberg myelosuppression model were used to simulate hemoglobin and neutrophil kinetics in human. The PK/PD model described the data well and validated the hypothesis that PD is driven by trough concentration. Based on the exposure-response relationship from the four xenograft models, the trough concentration needed to achieve tumor stasis for mouse was determined. In addition, the level of inhibition in tumor and plasma PD marker that was associated with tumor stasis was identified. Together with human PK parameters scaled using allometry, the dose range needed to achieve target therapeutic exposure for a typical human subject was predicted. Simulation results from erythropoiesis and Friberg myelosuppression models informed the optimal doing schedules for certain dose levels that would allow hematological toxicity to be manageable with & lt;40% reduction in hemoglobin and & gt;1.0 x 109/L neutrophil counts at all times. Overall, a translational modeling and simulation approach that considers safety and efficacy has been instrumental in the design of the first-in-human clinical development of PRMT5 inhibitor JNJ178 regarding selection of dose and schedule. Citation Format: Yue Guo, Nahor Haddish-Berhane, Hillary J. Millar, Tinne Verhulst, Tony Greway, Junguo Zhou, Loeckie DeZwart, Dana Gaffney, Joseph Portale, Dirk Brehmer, An Boeckx, Erika Van Heerde, Daniele Ouellet. Translational efficacy and safety modeling and simulation to support the clinical development of JNJ-64619178, a PRMT5 inhibitor [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 3905.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2015
    In:  Journal of Experimental Botany Vol. 66, No. 12 ( 2015-06), p. 3571-3579
    In: Journal of Experimental Botany, Oxford University Press (OUP), Vol. 66, No. 12 ( 2015-06), p. 3571-3579
    Type of Medium: Online Resource
    ISSN: 0022-0957 , 1460-2431
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2015
    detail.hit.zdb_id: 1466717-4
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 14, No. 1 ( 2023-08-03)
    Abstract: Oxygen is a key signalling component of plant biology, and whilst an oxygen-sensing mechanism was previously described in Arabidopsis thaliana , key features of the associated PLANT CYSTEINE OXIDASE (PCO) N-degron pathway and Group VII ETHYLENE RESPONSE FACTOR (ERFVII) transcription factor substrates remain untested or unknown. We demonstrate that ERFVII s show non-autonomous activation of root hypoxia tolerance and are essential for root development and survival under oxygen limiting conditions in soil. We determine the combined effects of ERFVII s in controlling gene expression and define genetic and environmental components required for proteasome-dependent oxygen-regulated stability of ERFVIIs through the PCO N-degron pathway. Using a plant extract, unexpected amino-terminal cysteine sulphonic acid oxidation level of ERFVIIs was observed, suggesting a requirement for additional enzymatic activity within the pathway. Our results provide a holistic understanding of the properties, functions and readouts of this oxygen-sensing mechanism defined through its role in modulating ERFVII stability.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2553671-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 950-950
    Abstract: Protein arginine methyltransferase 5 (PRMT5), a type II methyltransferase, is responsible for symmetric arginine di-methylation of multiple cellular proteins involved in the regulation of cellular transcription. PRMT5 is involved in cellular processes such as survival, proliferation, and apoptosis, and an elevated tumor PRMT5 protein level has recently been correlated with poor survival of cancer patients. JNJ-64619178, a selective PRMT5 inhibitor, showed inhibition of cellular growth in several cell lines representing multiple cancer histologies in vitro. From this, a broad selection of xenograft models was chosen to demonstrate potent anti-tumor efficacy. Xenograft models representing small cell lung cancer (SCLC), non-small cell lung cancer (NSCLC), acute myeloid leukemia (AML), and non-Hodgkin lymphoma were chosen to demonstrate anti-tumor efficacy. Biologically significant tumor growth inhibition up to 99% was observed in both solid and hematological xenograft models, including an aggressive disseminated model of AML, with oral doses of 1 to 10 mg/kg, once daily. Importantly, continued inhibition of tumor growth was observed for several weeks following dosing cessation. Dosing of JNJ-64619178 results in inhibition of Sym-Arg di-methylation of SMD1/3 proteins, core components of the spliceosome in the tumor, and general Sym-Arg di-methylation of serum proteins. These serve as pharmacodynamic markers of PRMT5 inhibition in xenograft models. Potent and prolonged inhibition of SMD1/3 di-methylation was observed in the SCLC model, during and after the dosing period. This has led to the exploration of alternative dosing regimens preclinically. PRMT5 inhibitor JNJ-64619178 is currently being investigated in a Phase I clinical trial, based on its high selectivity and potency, favorable pharmacokinetics and safety properties, and strong preclinical efficacy and pharmacodynamic data. Citation Format: Hillary J. Millar, Dirk Brehmer, Tinne Verhulst, Nahor Haddish-Berhane, Tony Greway, Dana Gaffney, An Boeckx, Erika Van Heerde, Thomas Nys, Joseph Portale, Ulrike Philippar, Tongfei Wu, Sylvie Laquerre, Kathryn Packman. In vivo efficacy and pharmacodynamic modulation of JNJ-64619178, a selective PRMT5 inhibitor, in human lung and hematologic preclinical models [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 950.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 20, No. 12 ( 2021-12-01), p. 2317-2328
    Abstract: The protein arginine methyltransferase 5 (PRMT5) methylates a variety of proteins involved in splicing, multiple signal transduction pathways, epigenetic control of gene expression, and mechanisms leading to protein expression required for cellular proliferation. Dysregulation of PRMT5 is associated with clinical features of several cancers, including lymphomas, lung cancer, and breast cancer. Here, we describe the characterization of JNJ-64619178, a novel, selective, and potent PRMT5 inhibitor, currently in clinical trials for patients with advanced solid tumors, non-Hodgkin's lymphoma, and lower-risk myelodysplastic syndrome. JNJ-64619178 demonstrated a prolonged inhibition of PRMT5 and potent antiproliferative activity in subsets of cancer cell lines derived from various histologies, including lung, breast, pancreatic, and hematological malignancies. In primary acute myelogenous leukemia samples, the presence of splicing factor mutations correlated with a higher ex vivo sensitivity to JNJ-64619178. Furthermore, the potent and unique mechanism of inhibition of JNJ-64619178, combined with highly optimized pharmacological properties, led to efficient tumor growth inhibition and regression in several xenograft models in vivo, with once-daily or intermittent oral-dosing schedules. An increase in splicing burden was observed upon JNJ-64619178 treatment. Overall, these observations support the continued clinical evaluation of JNJ-64619178 in patients with aberrant PRMT5 activity–driven tumors.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 74, No. 19_Supplement ( 2014-10-01), p. 4745-4745
    Abstract: Chromosomal rearrangements resulting in oncogenic fusion proteins containing the ROS1 receptor tyrosine kinase have been described in subsets of a variety of human malignancies including non-small-cell lung cancer (NSCLC), cholangiocarcinoma, and glioblastoma multiforme. Promising clinical responses have been observed in patients bearing tumors with ROS1 fusions treated with Xalkori, an ALK/MET kinase inhibitor that also inhibits Ros1. However, resistance has been observed and a ROS1 kinase domain mutation, G2032R, was identified in a ROS1 fusion positive NSCLC patient who developed resistance to Xalkori treatment. Clinical experience with other receptor tyrosine kinase inhibitors suggests that additional resistance mutations are likely to arise, highlighting the need for therapeutic agents that can overcome this type of resistance. We identified a novel chemical series of potent and selective Ros1 inhibitors with a unique DFG-out binding mode. The structure of human Ros1 in a complex with a ligand from this chemical class was confirmed by X-ray crystallography. Here we describe the structure-activity relationships and synthesis route for this chemical series. A representative compound from this series inhibited isolated recombinant Ros1 kinase activity with an IC50 of approximately 30 nM. This compound inhibited less than 6% of kinases in a panel of 400 at 1 μM concentration. Growth of Ba/F3 cells engineered to express Ros1 autophosphorylation in HCC78 NSCLC cells that harbor a SLC34A2-ROS1 fusion were inhibited at similar concentrations as the isolated protein. This activity translated into potent Ba/F3-Ros1 tumor growth inhibition in mice. This compound was also active on Ba/F3 cells containing Ros1 with a mutation in the gatekeeper residue, L2026M, in cell growth assays in vitro and tumor growth in vivo. Furthermore, this unique binding mode provides scope for activity on additional Ros1 mutations that confer resistance to Xalkori, such as the clinically relevant G2032R mutation. The results shown here describe a novel chemical series with a unique binding mode that has potential for activity in Ros1 driven tumors with mutations that confer resistance to Xalkori. Citation Format: Laurence Mevellec, Berthold Wroblowski, Ron Gilissen, Sophie Descamps, Elisabeth Pasquier, Christophe Adelinet, Marine Bourgeois, Guillaume Mercey, Matthieu Jeanty, Thierry Jousseaume, Aurélie Luguern, Javier Astray Gandara, Said Akzinnay, Etienne Daras, Inge Boeckx, Nele Van Slycken, Mariette Bekkers, Jeroen Van De Ven, Tinne Verhulst, Lieven Meerpoel, Jorge Vialard. Discovery of potent and selective Ros1 inhibitors with a unique DFG-out binding mode. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 4745. doi:10.1158/1538-7445.AM2014-4745
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages