Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 40, No. 16_suppl ( 2022-06-01), p. 2548-2548
    Abstract: 2548 Background: Circulating tumor DNA (ctDNA) is increasingly used as a prognostic marker with high ctDNA shedding associated with poor survival. Gene-, but not variant-specific, differences in ctDNA shedding have been reported. Tumor burden, mitotic rate, and cell death rate have been proposed as contributors to ctDNA shedding. Here we investigate associations of ctDNA shedding for the two most common mPDAC KRAS variants, G12D and G12V, with tumor burden, mitotic score, and overall survival (OS). Methods: Pretreatment (baseline) ctDNA was analyzed by droplet digital PCR for 86 (including 44 G12D, 30 G12V) patients with mPDAC receiving front-line chemoimmunotherapy in a randomized open-label Phase II study (NCT03214250). Baseline tumor burden in total, within the pancreas, and distally, was assessed by sum of RECIST target lesion diameters. Tumor tissue variant allele fraction (tVAF) and mitotic score (geometric mean expression of 65 mitosis-associated genes) were calculated from DNA and RNA sequencing. Results: ctKRAS shedding (dichotomized at median mutant copies/mL) was associated with OS for G12D bearing tumors (p = 0.03) but not G12V (p = 0.17, log-rank test). To identify variant-specific features of shedding, we examined the Spearman correlation for total tumor burden and ctKRAS shedding; G12D but not G12V shedding was correlated with tumor burden (p = 0.01 and p = 0.22 respectively). However, the higher tVAF in G12V compared to G12D tumors (p = 0.048, Mann-Whitney test) could result from differences in purity, ploidy, and KRAS copy number. Thus, we used tVAF as a scalar to calculate an adjusted tumor burden which was significantly correlated with both G12D and G12V ctDNA shedding (p = 0.004 and 0.02, respectively). When a patient’s distal vs. pancreatic lesions were analyzed separately, pancreatic tumor burden was not correlated with G12D or G12V shedding (p = 0.10 and 0.33, respectively) but distal burden was correlated with both (p = 0.001 and 0.02, respectively). While there was no difference by KRAS variant for the correlation between adjusted tumor burden and shedding, these results do suggest that, in patients with mPDAC, distal rather than primary tumor burden may drive ctDNA shedding. Finally, tumor mitotic rate was combined with adjusted total tumor burden in a linear regression model; both were significant for predicting G12D shedding (p = 0.007 and p 〈 0.0001, respectively) but not for G12V (p = 0.045 and p = 0.16, respectively). Conclusions: These data suggest that ctDNA shedding and survival associations may be KRAS variant-specific in mPDAC. Tumor mitotic score and location of tumors may explain some variant-specific differences in shedding. As clinical ctDNA tests become more widely used, further investigation of variant-specific shedding in KRAS and other genes may be key for proper interpretation of ctDNA tests.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2022
    detail.hit.zdb_id: 2005181-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 36, No. 15_suppl ( 2018-05-20), p. TPS12126-TPS12126
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2018
    detail.hit.zdb_id: 2005181-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 371-371
    Abstract: Introduction Multiple myeloma (MM) is characterised by the malignant expansion of clonal plasma cells in the bone marrow (BM). We and others have used massive parallel sequencing to describe the somatic aberrations acquired in different subclones in newly diagnosed MM (NDMM). These studies have showed that chemotherapy has an impact on intra-clonal heterogeneity, but more analyses are required in paired presentation/relapse samples and samples from multiple sites at the same and different time points. Materials and methods We have studied 49 paired presentation/relapse patients from a series of 463 NDMM patients entered into the Myeloma XI trial (NCT01554852). To understand the impact of spatial separation within the MM clone and the consideration that MM is a metastatic disease, we examined BM aspirates and compared them to targeted biopsies from extramedullary disease sites in 9 MM patients. These cases were 1 patient with samples bilaterally collected from the hip during the course of the disease, 4 MM cases with plasma cell leukemia (PCL), 3 MM cases with plasmacytomas, 1 MM patient with ascites, and 1 MM case with pleural effusion. DNA from both BM and peripheral blood samples were used for whole exome sequencing plus a pull down of the MYC, IGH, IGL and IGK loci following the SureSelect Target Enrichment System for Illumina Paired-End Sequencing Library v1.5. Exome reads were used to call single nucleotide variants, indels, translocations, and copy number aberrations. Mean sequencing depth was 59.3x. The proportion of mutant tumor cells carrying a mutation was inferred. The presence and proportion of subclones will be defined using bioinformatics tools. Results For the 463 NDMM samples, the following 15 significantly mutated genes are seen KRAS (n=103 mutations), NRAS (n=88), LTB (n=53), DIS3 (n=49), BRAF (n=37), EGR1 (n=22), FAM46C (n=20), IRF4 (n=19), TRAF3 (n=17), HIST1H1E (n=16), TP53 and FGFR3 (n=14), CYLD (n=13), MAX (n=12), and RB1 (n=5). These mutations were seen within all clonal cells and at subclonal levels, consistent with the mutations being acquired at different time points and being associated with different subclonal fitness. We show that NDMM have a mean number of exonic mutations of 61.1±13.0, in contrast to samples taken at the time of relapse, which show an average of 80.6±25.4, Figure 1A. We report diverse patterns of subclonal evolution: no change, subclonal tiding, and subclonal tiding with new subclones arising. We are currently examining samples taken during clinical remission to track subclones at the time of response. For patient with multiple samples taken at different timepoints, 77 mutations were shared across all samples but, of note, specific mutations were seen at the same timepoint in different sites (13/1662 R2R vs 13/1662 R2L), which illustrates the impact of sampling differences in reporting mutation calls and differential response to therapy, Figure 1B. This is also observed in a plasmacytoma case with both a BM aspirate sample containing 11 mutations (including NRAS c.183A 〉 T and BRAF c.1783T 〉 C), and a femur plasmacytoma with 18 mutations, of which only 2 are shared with the BM sample, Figure 3. One of these shared lesions is BRAF c.1783T 〉 C, the cancer clonal fraction of which increases ten-fold, suggesting that the sub-clone with this mutation disseminated from the BM and founded the plasmacytoma. Conclusion Our preliminary data demonstrate that MM subclones not only respond differently to clinical treatment, but also have different biological properties leading to cause extramedullary disease. To our knowledge, this is the first comprehensive genetic analysis of the spatio-temporal heterogeneity in myeloma and reveals genetic differences due to sampling bias. Figure 1. (A) Number of mutations in MM patients at clinical presentation and relapse. Each patient sample is represented by a dot. Lines and error bars correspond to the average and the standard error of the mean values, respectively. Difference was not statistically significant (p 〉 0.05, t-test). (B) MM patient analysed at presentation and following two relapses (top). The number of mutations increases through disease (bottom, left panel). Venn plot shows the number of shared and specific mutations for each time point (bottom, right panel). (C) Case with a MM sample (green) and a femur plasmacytoma (blue). Venn plot shows shared and specific mutations to the bone marrow or the plasmacytoma site. Figure 1. (A) Number of mutations in MM patients at clinical presentation and relapse. Each patient sample is represented by a dot. Lines and error bars correspond to the average and the standard error of the mean values, respectively. Difference was not statistically significant (p 〉 0.05, t-test). (B) MM patient analysed at presentation and following two relapses (top). The number of mutations increases through disease (bottom, left panel). Venn plot shows the number of shared and specific mutations for each time point (bottom, right panel). (C) Case with a MM sample (green) and a femur plasmacytoma (blue). Venn plot shows shared and specific mutations to the bone marrow or the plasmacytoma site. Disclosures Jones: Celgene: Other: Travel support, Research Funding. Peterson:University of Arkansas for Medical Sciences: Employment. Brioli:Celgene: Honoraria; Janssen: Honoraria. Pawlyn:Celgene: Honoraria, Other: Travel support; The Institute of Cancer Research: Employment. Gregory:Janssen: Honoraria; Celgene: Honoraria. Davies:Onyx-Amgen: Membership on an entity's Board of Directors or advisory committees; Array-Biopharma: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Takeda-Millennium: Membership on an entity's Board of Directors or advisory committees; University of Arkansas for Medical Sciences: Employment. Morgan:CancerNet: Honoraria; University of Arkansas for Medical Sciences: Employment; MMRF: Honoraria; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Weisman Institute: Honoraria; Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda-Millennium: Honoraria, Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 2138-2138
    Abstract: Introduction: CD38 is highly and uniformly expressed on myeloma cells (1). Daratumumab is a human anti-CD38 IgG1κ monoclonal antibody that has previously shown a favourable safety profile as a single agent in patients with relapsed and refractory (RR) multiple myeloma (MM) (2). This study further assesses the efficacy of Daratumumab in combination with Dexamethasone in heavily pre-treated myeloma patients that are refractory to Lenalidomide, Pomalidomide, and Bortezomib. Methods: This study is an ongoing, open-label phase II study of Daratumumab in combination with Dexamethasone (NCT02626481). Sixty-four, heavily pretreated Patients were recruited in thirty centres in France and Belgium from November 2015, to receive Daratumumab and Dexamethasone. Daratumumab 16 mg/kg was administered weekly during the first two 28-day cycles, every other week during Cycles three through six, and monthly in Cycle seven and beyond until disease progression or unacceptable toxicity. Patients were all refractory to Lenalidomide (Len), Pomalidomide (Pom) (defined by a progression within 60 days from last drug dosing) and Bortezomib (Bz) (defined by a progression within 6 months from last drug dosing). The primary objective was overall response rate as per the International Myeloma Working Group criteria. A planned safety and efficacy interim analysis was performed after the first 19 patients were enrolled. The last patient was enrolled on the 1stof August 2016. Results: Sixty-four patients were recruited onto the study. The median age (range) at screening was 61 (30-80). The median number (range) of prior lines of therapy was 6 (2-9). Sixty-seven percent of patient had previously received an autologous stem-cell transplant. At the time of screening, 20% of patients (n=13) had a t(4;14) and 12.5% (n=8) a del(17p). Planned interim analysis after the first 19 patients were enrolled did not find any unexpected toxicity. Safety and efficacy results (data cut May 15, 2016) of Daratumumab 16 mg/kg are presented here. No patient discontinued treatment due to Treatment Emergent Adverse Event such as infusion related reactions. Ten (15%) patients discontinued treatment due to disease progression after a median of one-cycle. The most common non-haematological TEAEs included infusion related (IRR, n=5, 8%), and fatigue (n=6, 9.3%). All patients with IRRs recovered and continued to receive treatment. Only six (9.5%) patients experienced hyperthermia. Thrombocytopenia and neutropenia were the most frequently reported grade 3 or 4 TEAE (11 and 5% respectively). Planned interim efficacy assessment showed a response rate (defined as a Partial Response (PR) or greater) in 3/19 patients at the end of the first cycle and 4/19 at the end of the second cycle, and a clinically relevant response (Stable Disease (SD) or greater) at the end of the second cycle for 11 of 19 patients, thus meeting the planed futility criteria and enabling the trial to go forward. As per the 15thof May, among the 40 evaluable patients (that had received at least 2 treatment cycles or progressed within the first) the overall response rate (3) was 25%, with eight (20%) partial responses (PR) and two (5%) very good partial responses (VGPRs) after a median of two cycles (range 1-5). An additional seven patients (17.5%) obtained a Minimal Response (MR) according to the EBMT criteria (4). This is consistent with prior results. Updated results will be presented at the time of ASH. Conclusions: Daratumumab in combination with Dexamethasone is a safe treatment option with a favourable benefit/risk profile for the treatment of triple relapsed or refractory (Len, Pom and Bz) myeloma patients. 1. Stevenson GT. CD38 as a Therapeutic Target. Mol Med. 2006;12(11-12):345-6. 2. Lokhorst HM, Plesner T, Laubach JP, Nahi H, Gimsing P, Hansson M, et al. Targeting CD38 with Daratumumab Monotherapy in Multiple Myeloma. N Engl J Med. 2015 Sep 24;373(13):1207-19. 3. Kyle R, Rajkumar S. Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leuk Off J Leuk Soc Am Leuk Res Fund UK. 2009 Jan;23(1):3-9. 4. Bladé J,et al. Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Myeloma Subcommittee of the EBMT. Br J Haematol. 1998 Sep;102(5):1115-23. Disclosures Boyle: Novartis: Honoraria; Pfizer: Honoraria; Takeda: Honoraria; Janssen: Honoraria. Leleu:Novartis: Honoraria; LeoPharma: Honoraria; Pierre Fabre: Honoraria; Amgen: Honoraria; Bristol-Myers Squibb: Honoraria; Takeda: Honoraria; Celgene: Honoraria; Janssen: Honoraria; TEVA: Membership on an entity's Board of Directors or advisory committees. Hulin:Amgen: Honoraria; Janssen: Honoraria; Bristol: Honoraria; celgene: Honoraria; takeda: Honoraria. Moreau:Takeda: Honoraria; Janssen: Honoraria, Speakers Bureau; Celgene: Honoraria; Novartis: Honoraria; Amgen: Honoraria; Bristol-Myers Squibb: Honoraria. Fohrer:amgen: Consultancy; celgne: Consultancy. Decaux:SIEMENS: Honoraria, Other: supply of free light chain assays , Research Funding; The Binding Site: Other: supply of free light chain assays , Research Funding. Avet-Loiseau:celgene: Consultancy; amgen: Consultancy; janssen: Consultancy; sanofi: Consultancy. Attal:celgene: Consultancy, Research Funding; amgen: Consultancy, Research Funding; janssen: Consultancy, Research Funding; sanofi: Consultancy. Facon:Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Other: travel and expense, Speakers Bureau.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 2983-2983
    Abstract: Introduction Hyperdiploidy (HRD) comprises the largest pathogenetic subgroup of myeloma. However, its clinical and molecular characterisation is incomplete. Here, we investigate HRD using a novel high-throughput molecular analysis method (MyMaP - Myeloma MLPA and translocation PCR; Kaiser MF et al., Leukemia 2013; Boyle EM et al., Gen Chrom Canc 2015) in a large cohort of 1,036 patients from the UK NCRI Myeloma XI trial. Materials, Methods and Patients Copy number changes, including gain of chromosomes 5, 9 and 15, as well as translocation status were assayed for 1,036 patients enrolled in the UK NCRI Myeloma XI (NCT01554852) trial using CD138+ selected bone marrow myeloma cells taken at diagnosis. HRD was defined by triploidy of at least 2 of analysed chromosomes 5, 9 or 15. Analysis was performed on standard laboratory equipment with MyMaP, a combination of TC-classification based multiplex qRT-PCR and multiplex ligation-dependent probe amplification (MLPA; MRC Holland). The parallel assessment of multiple loci with copy number alteration (CNA) by MLPA allowed unbiased association studies using a Bayesian approach. Semi-quantitative gene expression data for CCND1 and CCND2 was generated as part of the multiplexed qRT-PCR analysis. Median follow up for the analysis was 24 months. Results Of the 1,036 analysed patients, 475 (46%) were HRD. Of these, 325 (68%) had gain(11q25), 141 (29.7%) gain(1q), 43 (9.1%) del(1p32) and 36 (7.5%) del(17p). Gain(11q25) was significantly associated with HRD (Bayes Factor BF01 〈 0.05) in the entire group of 1,036 cases and occurred in only 17% of non-HRD cases, but frequencies of the other copy number alterations (CNA) were similar to entire group. Although gain(1q) was negatively correlated with gain(11q25) within the HRD group (Corr-0.21, BF=0.0004), the two lesions co-occurred in 73 (15.4%) cases. Analysis of other CNA revealed that del(13q) was significantly less frequent (25%) in HRD cases than in non-HRD (56%) cases (BF 〈 0.0001). Interestingly, del(13q) within HRD was highly associated with gain(1q) (BF 〈 0.0001) and negatively correlated with gain(11q25) (BF 〈 0.0001). Thus, CNA status can help discriminate three distinct molecular subgroups of HRD: gain(11q25), gain(11q25)+gain(1q), gain(1q)[+/-del(13q)]. HRD cases were classified as D1, D2 or D1+D2 according to the TC classification based on qPCR CCND1 and CCND2 expression values and expression was correlated with copy number status. An association of the D1 subtype with gain(11q25) and of D2 with gain(1q) was confirmed. CCND1 expression was significantly (P 〈 0.001) higher in cases with gain(11q) [Mean Relative Quantitative (RQ) value 5,466] than in cases with gain(1q) [Mean RQ value 721] . In contrast, CCND2 expression values were significantly higher in cases with gain(1q) [Mean RQ 8,723] than in cases with gain(11q) [mean RQ 1,087] (P 〈 0.001). Co-occurrence of gain(11q) and gain(1q) was associated with intermediate values with CCND1 mean RQ 5,090 and CCND2 mean RQ 2,776, reminiscent of the D1+D2 subtype. HRD was associated with favourable outcome when compared to non-HRD cases with median PFS 28.8 vs. 21.7 months (P 〈 0.0001) and 24-months OS of 83% vs. 77% (median not reached), respectively. However, cases with t(11;14) had a median PFS of 27.0 months and 24-month OS of 80%, combarable to outcome of the HRD group. Within HRD cases, gain(1q) was associated with shorter PFS (P =0.02) and OS (P =0.009), associating the D2 group with inferior outcome. Presence of del(1p32) was associated with inferior PFS (P =0.01) and OS (P =0.0007) in the HRD subgroup and del(17p) was associated with inferior OS (P =0.04) with a trend for PFS. HRD cases with presence of any of the risk factors gain(1q), del(1p32) or del(17p) in comparison to those without had a median PFS of 25.1 vs 35.1 months (P =0.0001) and 24-month OS of 73.8% vs 89.0% (P 〈 0.0001). Conclusion We describe in a large trial cohort an association between gain(11q25) and the D1 hyperdiploid subtype as well as gain(1q) and the D2 subtype, a finding that has so far only been inferred by gene expression array data in the original TC classification. We also find an association with adverse outcome for the D2/gain(1q) subtype. Our findings demonstrate that the novel molecular approach MyMaP allows precise molecular sub-classification of HRD myeloma. Disclosures Kaiser: BristolMyerSquibb: Consultancy; Chugai: Consultancy; Janssen: Honoraria; Amgen: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding. Pawlyn:Celgene: Honoraria, Other: Travel support; The Institute of Cancer Research: Employment. Jones:Celgene: Other: Travel support, Research Funding. Savola:MRC Holland: Employment. Owen:Celgene: Honoraria, Research Funding; Janssen: Honoraria. Cook:Takeda Oncology: Consultancy, Research Funding, Speakers Bureau; Amgen: Consultancy, Speakers Bureau; Sanofi: Consultancy, Speakers Bureau; BMS: Consultancy; Celgene: Consultancy, Research Funding, Speakers Bureau; Janssen: Consultancy, Research Funding, Speakers Bureau. Gregory:Janssen: Honoraria; Celgene: Honoraria. Davies:Onyx-Amgen: Honoraria; Celgene: Honoraria; University of Arkansas for Medical Sciences: Employment; Takeda-Milenium: Honoraria. Jackson:Amgen: Honoraria; Takeda: Honoraria; Celgene: Honoraria. Morgan:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Weisman Institute: Honoraria; Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda-Millennium: Honoraria, Membership on an entity's Board of Directors or advisory committees; University of Arkansas for Medical Sciences: Employment; CancerNet: Honoraria; MMRF: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 2981-2981
    Abstract: Introduction Identifying molecular high risk myeloma remains a diagnostic challenge. We previously reported co-segregation of 〉 1 adverse lesion [t(4;14), t(14;16), t(14;20), gain(1q), del(17p)] by iFISH to specifically characterise a group of high risk patients (Boyd et al., Leukemia 2012). However, implementation of this approach is difficult using FISH because of its technical limitations. We recently developed and validated a novel high-throughput all-molecular testing strategy against FISH (MyMaP- Myeloma MLPA and translocation PCR; Kaiser MF et al., Leukemia 2013; Boyle EM et al., Gen Chrom Canc 2015). Here, we molecularly characterised 1,036 patients from the NCRI Myeloma XI trial using MyMaP and validated the co-segregation approach. Materials, Methods and Patients Recurrent translocations and copy number changes were assayed for 1,036 patients enrolled in the NCRI Myeloma XI (NCT01554852) trial using CD138+ selected bone marrow myeloma cells taken at diagnosis. The trial included an intensive therapy arm for younger and fitter and a non-intense treatment arm for elderly and frail patients. Analysis was performed using MyMaP, which comprises TC-classification based multiplex qRT-PCR and multiplex ligation-dependent probe amplification (MLPA; MRC Holland). Median follow up for the analysis was 24 months. Results Adverse translocations [t(4;14), t(14;16), t(14;20)] were present in 18.2% of cases, del(17p) in 9.3%, gain(1q) in 34.5% and del(1p32) in 9.4% of cases. All adverse lesions were associated with significantly shorter PFS and OS by univariate analysis (P 〈 0.05 for all). Of the 1,036 analysed cases, 13.5% carried 〉 1 adverse lesion, 33.9% had one isolated adverse lesion and 52.6% had no adverse lesion. Presence of 〉 1, 1 or no adverse lesion was associated with a median PFS of 17.0, 23.9 and 30.6 months (P =3.0x10-9) and OS at 24 months of 67.9%, 75.0% and 86.0% (P =1.8x10-7), respectively. Del(1p) was associated with shorter PFS and OS for the intensive, but not for the non-intensive therapy arm and was independent of the co-segregation model by multivariate analysis regarding OS (P =0.006). We thus included del(1p) as an additional adverse lesion in the model for younger patients. The groups with 〉 1 (19.4% of cases), 1 (31.1%) and no adverse lesions (49.5%) were characterised by median PFS of 19.4, 29.4 and 39.1 months (P =1.2x10-10) and median 24-months survival of 73.8%, 86.4% and 91.5% (P =1.4x10-6), respectively. Hazard Ratio for 〉 1 adverse lesion was 3.0 (95% CI 2.1-4.1) for PFS and 3.8 (95% CI 2.2-6.5) for OS. By multivariate analysis, co-segregation of adverse lesions was independent of ISS for PFS/OS in the entire group of 1,036 cases and in the intensive treatment arm. We integrated adverse lesions and ISS into a combined model defining High Risk ( 〉 1 adv les + ISS 2 or 3; 1 adv les + ISS 3) and Low Risk (no adv les + ISS 1 or 2; 1 adv les + ISS 1) and the remainder as Intermediate Risk. The High Risk, Intermediate Risk and Low Risk groups of the total cohort included 11.2%, 41.2% and 41.6% of cases with median PFS of 15.8, 19.8 and 35.2 months (P 〈 2.2x10-16) and median OS at 24 months of 62.9%, 73.7%, and 90.7% (P =4.0x10-14), respectively. Integration of ISS into the model for younger patients resulted in highly specific identification of a High Risk group (15.6% of cases) with HR 3.8 (CI 2.6-5.4) for PFS and 6.2 (CI 3.3-11.6) for OS. Conclusions Co-segregation analysis of adverse genetic lesions is a specific molecular risk stratification tool which has now been validated in two large independent trials including a real-world population of all age groups (UK MRC Myeloma IX; NCRI Myeloma XI; total 1,905 patients). MyMaP is a validated all-molecular analysis approach that makes the otherwise technically challenging assessment of multiple genetic regions by FISH accessible using standard laboratory equipment without bioinformatics requirements. Disclosures Kaiser: BristolMyerSquibb: Consultancy; Chugai: Consultancy; Janssen: Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria. Pawlyn:Celgene: Honoraria, Other: Travel support; The Institute of Cancer Research: Employment. Jones:Celgene: Other: Travel support, Research Funding. Savola:MRC Holland: Employment. Owen:Celgene: Honoraria, Research Funding; Janssen: Honoraria. Cook:Celgene: Consultancy, Research Funding, Speakers Bureau; BMS: Consultancy; Sanofi: Consultancy, Speakers Bureau; Amgen: Consultancy, Speakers Bureau; Takeda Oncology: Consultancy, Research Funding, Speakers Bureau; Janssen: Consultancy, Research Funding, Speakers Bureau. Gregory:Celgene: Honoraria; Janssen: Honoraria. Davies:Takeda-Milenium: Honoraria; Onyx-Amgen: Honoraria; Celgene: Honoraria; University of Arkansas for Medical Sciences: Employment. Jackson:Celgene: Honoraria; Takeda: Honoraria; Amgen: Honoraria. Morgan:Weisman Institute: Honoraria; Takeda-Millennium: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees; University of Arkansas for Medical Sciences: Employment; CancerNet: Honoraria; MMRF: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Informa UK Limited ; 2015
    In:  Expert Opinion on Drug Safety Vol. 14, No. 4 ( 2015-04-03), p. 601-607
    In: Expert Opinion on Drug Safety, Informa UK Limited, Vol. 14, No. 4 ( 2015-04-03), p. 601-607
    Type of Medium: Online Resource
    ISSN: 1474-0338 , 1744-764X
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2015
    detail.hit.zdb_id: 2114527-1
    SSG: 15,3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 3895-3895
    Abstract: As clinical trials for relapsed Acute Myeloid Leukaemia (AML) patients do not accurately reflect the daily clinical reality, data regarding the outcome of these patients is scarce. We thus conducted a retrospective analysis to quantify the prospects of salvage treatment of primary refractory or first-relapse AML patients and to assess the contribution of allograft and intensive treatment regimens with respect to major risk groups in a real-life setting. Methods We performed a retrospective analysis of 163 patients diagnosed from 2005-2012, in 5 haematological centres in the north of France (Lille, Amiens, Roubaix, Valenciennes and Lens). We considered every patient in that time frame who was treated following an intensive pathway. Statistical analysis as performed using Kaplan-Meier survival analysis and logrank test in the SPSS software Results The mean age at diagnosis was 45 (range 16-70 years) and the median age at relapse was 48 (ranging 17-70 years). The median time from diagnosis to relapse was 8 months. 20.6% of patients were considered primary refractory (relapse within 60 days from diagnosis). The median overall survival was 28 months (95% CI was 17-38 months). There was no statistically significant survival difference between primary refractory patients and first relapsed patients. Unsurprisingly, survival was significantly (p 〈 0.05) higher in the transplanted patients (48 months) than in the non-transplanted group (19 months) and in those who achieved CR (48 months) than in those who didn’t (14 months). Risk stratification was established using the European Leukaemia Network (ELN) classification and the repartition was as followed: favourable (14.3%), intermediate I (18.3%), intermediate II (41.8%) and unfavourable (23.5%). 65% of patients achieved a complete remission (CR). This percentage varied by risk group as follows: favorable (84%), intermediate I (67%), intermediate II (59%) and adverse (39%). Median overall survivals were not statistically significantly different in between the groups but there was a trend suggesting than intermediate I performed poorly (median OS: 19months versus 48 months for favourable, 35 for intermediate II and 18 months for unfavourable patients). When considering treatment regimens, there were no significant difference between the regimens used (Mitoxantrone-Cytarabine-Quinine (MAQ) (n=26), Amsacrine-Cytarabine (n=62), Fludarabine-Cytarabine-Mitoxantrone (FLAN)(n=24), Idarubicine or Daunorubicine Cytarabine (n=21), Clofarabine-Cytarabine (n=4), Mylotarg based (n=9) and other (HDAC, Cytarabine as a single agent)(n=16). The median OS for these groups were respectively 16, 44, 24, not reached, 20, 21 and 11 months. Further analysis is hindered by the size of the groups. Discussion This data suggests that for patients with favourable disease delaying transplant to first relapse and treating them with intensive salvage regimen is a valuable option. High risk patients still perform poorly. The relative low representation of these patients (23.6%) is probably due to the fact that these patients are transplanted upfront and often not treated using intensive regimens at relapse. Discussion remains for the intermediate patients. In our study, although numbers are small, they do not seem to behave similarly. The outcome of intermediate I patients resembles more unfavourable patients: this should be considered when discussing both upfront transplantation and management at first relapse. Conclusion This data suggests that delaying transplant for low risk patients is feasible and associated with a good outcome. Salvage intensive chemotherapy and transplant is an effective approach for these patients. Intermediate I patients behave like unfavourable patients and should thus be considered for upfront transplantation and experimental treatments. Disclosures: Preudhomme: CELGENE: Research Funding. Quesnel:CELGENE: Research Funding. Berthon:CELGENE: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 22, No. 6 ( 2016-03-15), p. 1480-1488
    Abstract: Purpose: Whole-genome sequencing has revealed MYD88 L265P and CXCR4 mutations (CXCR4mut) as the most prevalent somatic mutations in Waldenström macroglobulinemia. CXCR4 mutation has proved to be of critical importance in Waldenström macroglobulinemia, in part due to its role as a mechanism of resistance to several agents. We have therefore sought to unravel the different aspects of CXCR4 mutations in Waldenström macroglobulinemia. Experimental Design: We have scanned the two coding exons of CXCR4 in Waldenström macroglobulinemia using deep next-generation sequencing and Sanger sequencing in 98 patients with Waldenström macroglobulinemia and correlated with SNP array landscape and mutational spectrum of eight candidate genes involved in TLR, RAS, and BCR pathway in an integrative study. Results: We found all mutations to be heterozygous, somatic, and located in the C-terminal domain of CXCR4 in 25% of the Waldenström macroglobulinemia. CXCR4 mutations led to a truncated receptor protein associated with a higher expression of CXCR4. CXCR4 mutations pertain to the same clone as to MYD88 L265P mutations but were mutually exclusive to CD79A/CD79B mutations (BCR pathway). We identified a genomic signature in CXCR4mut Waldenström macroglobulinemia traducing a more complex genome. CXCR4 mutations were also associated with gain of chromosome 4, gain of Xq, and deletion 6q. Conclusions: Our study panned out new CXCR4 mutations in Waldenström macroglobulinemia and identified a specific signature associated to CXCR4mut, characterized with complex genomic aberrations among MYD88L265P Waldenström macroglobulinemia. Our results suggest the existence of various genomic subgroups in Waldenström macroglobulinemia. Clin Cancer Res; 22(6); 1480–8. ©2015 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Gerontology, S. Karger AG, Vol. 68, No. 9 ( 2022), p. 1070-1080
    Abstract: 〈 b 〉 〈 i 〉 Introduction: 〈 /i 〉 〈 /b 〉 As effective interventions to prevent inpatient falls are lacking, a novel technological intervention was trialed. The Ambient Intelligent Geriatric Management (AmbIGeM) system used wearable sensors that detected and alerted staff of patient movements requiring supervision. While the system did not reduce falls rate, it is important to evaluate the acceptability, usability, and safety of the AmbIGeM system, from the perspectives of patients and informal carers. 〈 b 〉 〈 i 〉 Methods: 〈 /i 〉 〈 /b 〉 We conducted a mixed-methods study using semistructured interviews, a pre-survey and post-survey. The AmbIGeM clinical trial was conducted in two geriatric evaluation and management units and a general medical ward, in two Australian hospitals, and a subset of participants were recruited. Within 3 days of being admitted to the study wards and enrolling in the trial, 31 participants completed the pre-survey. Prior to discharge (post-intervention), 30 participants completed the post-survey and 27 participants were interviewed. Interview data were thematically analyzed and survey data were descriptively analyzed. 〈 b 〉 〈 i 〉 Results: 〈 /i 〉 〈 /b 〉 Survey and interview participants had an average age of 83 (SD 9) years, 65% were female, and 41% were admitted with a fall. Participants considered the AmbIGeM system a good idea. Most but not all thought the singlet and sensor component as acceptable and comfortable, with no privacy concerns. Participants felt reassured with extra monitoring, although sometimes misunderstood the purpose of AmbIGeM as detecting patient falls. Participants’ acceptability was strongly positive, with median 8+ (0–10 scale) on pre- and post-surveys. 〈 b 〉 〈 i 〉 Discussion/Conclusion: 〈 /i 〉 〈 /b 〉 Patients’ acceptability is important to optimize outcomes. Overall older patients considered the AmbIGeM system as acceptable, usable, and improving safety. The findings will be important to guide refinement of this and other similar technology developments.
    Type of Medium: Online Resource
    ISSN: 0304-324X , 1423-0003
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2022
    detail.hit.zdb_id: 1482689-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages