In:
Nature, Springer Science and Business Media LLC, Vol. 613, No. 7944 ( 2023-01-19), p. 582-587
Abstract:
Cas12a2 is a CRISPR-associated nuclease that performs RNA-guided, sequence-nonspecific degradation of single-stranded RNA, single-stranded DNA and double-stranded DNA following recognition of a complementary RNA target, culminating in abortive infection 1 . Here we report structures of Cas12a2 in binary, ternary and quaternary complexes to reveal a complete activation pathway. Our structures reveal that Cas12a2 is autoinhibited until binding a cognate RNA target, which exposes the RuvC active site within a large, positively charged cleft. Double-stranded DNA substrates are captured through duplex distortion and local melting, stabilized by pairs of ‘aromatic clamp’ residues that are crucial for double-stranded DNA degradation and in vivo immune system function. Our work provides a structural basis for this mechanism of abortive infection to achieve population-level immunity, which can be leveraged to create rational mutants that degrade a spectrum of collateral substrates.
Type of Medium:
Online Resource
ISSN:
0028-0836
,
1476-4687
DOI:
10.1038/s41586-022-05560-w
Language:
English
Publisher:
Springer Science and Business Media LLC
Publication Date:
2023
detail.hit.zdb_id:
120714-3
detail.hit.zdb_id:
1413423-8
SSG:
11
Bookmarklink