Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 3283-3283
    Abstract: Abstract 3283 Donor-derived regulatory T cells (Treg) and natural killer (NK) cells can respectively improve stem cell transplant (SCT) outcome by reducing graft versus host disease (GVHD) severity and exerting a graft-versus-leukemia effect. High frequencies of donor Treg are associated with less GVHD, and low doses of interleukin-2 (IL-2) can expand both NK and Treg after allogeneic SCT. To explore the feasibility of improving the quality of peripheral blood SCT donations, we evaluated the safety and the tolerability of ultra-low dose IL-2 administration to volunteers with the aim of preferentially expanding Treg and NK cells. Twelve healthy volunteers (mean age 34 years; range 22–57) received 0.1 or 0.2 million U/m2/day IL-2 subcutaneously for 5 days (NIH protocol 11-H-0268). Blood samples were collected before and 1, 2, 3, 4, 7 and 28 days after IL-2 injection. Samples were analyzed by multiplex techniques including whole transcriptome gene expression with HumanGene 1.0ST microarrays; serum levels of 69 cytokines and chemokines by Luminex assay; and lymphocyte phenotyping by flow cytometry, to comprehensively characterize the cellular and molecular immune response to IL-2 (“IL-2 immunome”). Treg subsets were determined within the CD4+ T cell population using FoxP3, Helios, CD45RA and CD31 to identify thymus-derived natural Treg (nTreg), induced Tregs (iTreg) and their recent thymic emigrants (RTE). NK cell subsets were determined within CD56+CD3- population using NKG2A, KIR2DL1, KIR2DL2/3, KIR3DL1 and CD57 to identify CD56bright, CD56dim NKG2A+KIR-, and CD56dim KIR+CD57+ cells. All subjects tolerated ultra-low dose IL-2 with minimal adverse events (mainly grade 1–2 injection site reactions). The fraction of FoxP3+Treg in CD4 rose significantly above baseline peaking at 4 days (3.7% vs 5.8%; p=0.0004) after the first dose of IL-2. Treg subset analysis demonstrated that the fraction of nTreg and RTE nTreg in CD4 expanded significantly in the lower dose cohort compared to the higher dose cohort (p=0.004 and p=0.005 respectively). %CD56bright NK significantly increased at 7 days (p=0.008), whereas CD56dimNKG2A+KIR-, and CD56dimKIR+CD57+ NK cells remained at baseline. The Ki67 proliferation marker further verified a significant in vivo expansion of CD56bright NK cells with ultra-low dose IL-2. Cytokine and chemokine profiling demonstrated significant increase circulating level of IP-10 (P=0.0018) through day 2 to 4 after IL-2 injections. In contrast, circulating levels of IL-2, IL-6, IL-10, IL-15 and IL-17 remained unchanged after IL-2 injection. Gene expression microarray studies revealed significant changes in 24 genes (P value 〈 0.1 corrected by false discovery rate (FDR) for multiple testing), including up-regulation of IL-2RA and FOXP3 as early as 2 days after IL-2 injections. Gene Set Analysis (GSA) revealed significant changes (P value 〈 0.1 after FDR) in innate immune response pathways, including Toll-like receptor signaling and interferon signaling. This is the first study to show that ultra-low dose IL-2 could be safely administrated to healthy volunteers to expand thymic-derived natural Treg and CD56bright NK cells. These results raise the possibility of using ultra-low dose IL-2 to boost Treg and NK cells in stem cell donors. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 3089-3089
    Abstract: Introduction: Proof of principle that adoptively transferred NK cells can mediate regression of hematological malignancies has recently been established in the clinic. Despite recent advances in the field, the overall efficacy of NK-cell based immunotherapy remains limited. Directing cellular migration to tumor-bearing tissues could be used as a method to improve the efficacy of NK cell-based immunotherapy. As most hematological malignancies arise from bone marrow (BM) compartments, we investigated the potential of genetic modification of NK cells to express high levels of the BM homing chemokine receptor CXCR4 to improve NK cell migration to BM compartments in vivo. Methods: Human NK cells were expanded ex vivo in G-rex flasks for 14 days using irradiated EBV-LCL feeder cells and IL-2 containing media. Electroporation (EP) of NK cells with mRNA coding for the wild-type CXCR4 receptor (WT CXCR4) and the gain-of-function mutation CXCR4 receptor (CXCR4-R334X) was performed using the MaxCyte GT instrument. Cell viability and receptor expression was assessed by flow cytometry using a BD LSR II Fortessa. In vitro transwell migration assays towards the CXCR4 ligand SDF-1α were performed in serum-free media over 2 hours at +37¡C. Pretreatment of NK cells with 100 uM of plerixafor for 30 min at +4¡C prior to migration assays was used for CXCR4 blockade experiments. In vivo homing studies were performed with bioluminescence tracking of luciferase-transfected NK cells in NSG mice. Animals were imaged using an IVIS Bioluminescence imager 1 and 24 hours after adoptive NK cell transfer. Results: EP of ex vivo expanded NK cells with either WT CXCR4 or CXCR4-R334X mRNA both resulted in a substantial increase in CXCR4 surface expression for up to 36 hours compared to non-EP NK cell controls. In vitro assays showed CXCR4-R334X transfected NK cells had superior migration to SDF-1α compared to both WT CXCR4 transfected and control NK cells, with an average 40% increase in their migration capacity towards SDF-1α compared to non-transfected NK cells (n=10 donors). This augmented migration capacity was abrogated when the CXCR4 receptor was selectively blocked with plerixafor. To confirm that CXCR4-R334X modified NK cells had improved BM homing capacity in vivo, we compared the distribution of these cells using bioluminescent imaging (BLI) after transfection with luciferase mRNA and intravenous injection into NSG mice (n=3). Twenty-four hours after adoptive transfer, CXCR4-R334X mRNA EP NK cells had improved homing to BM compartments such as the vertebrae, sternum ribs, and femurs compared to their unmodified NK cells counterparts (figure). Conclusions: The data demonstrate that genetic modification of NK cells with CXCR4-R334X mRNA can be utilized to efficiently direct their homing of infused NK cells to BM compartments in vivo. We hypothesize that CXCR4-modified NK cells can be utilized to improve the efficacy of adoptive NK cell immunotherapy for patients with BM-residing malignancies such as leukemia and multiple myeloma. Emily R. Levy is a predoctoral candidate in the Molecular Medicine program of Institute for Biomedical Sciences at the George Washington University. This work is from a dissertation to be presented to the above program in partial fulfillment of the requirements for the Ph.D. degree. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 1894-1894
    Abstract: Introduction : Natural killer (NK) cells are highly cytotoxic immune cells that can kill tumor cells via release of cytotoxic granulae as well as through induction of tumor apoptosis by ligands that bind death receptors expressed on the target cells. Clinical trials have established that adoptive infusions of ex vivo expanded NK cells are safe and can induce tumor regression in selected groups of cancer patients. Recent data suggest that Ewing's sarcoma (EwS), a bone cancer associated with poor survival in the context of metastatic disease, is exquisitely sensitive to killing by NK cells due to low expression of HLA class I molecules that normally prevent NK cell cytotoxicity through interactions with inhibitory NK cell receptors. We and others have recently shown that ex vivo expansion of NK cells causes upregulation of their activation receptors such as NKG2D and death receptor ligands such as TRAIL, which collectively make expanded NK cells more cytotoxic than resting non-expanded NK cells. In an effort to optimize the full therapeutic potential of adoptive NK cell immunotherapy against EwS in the clinic, we investigated the mechanisms utilized by ex vivo expanded NK cells to recognize and kill EwS cells. Methods : Healthy donorNK cells were expanded for 14 days using irradiated EBV-LCL cells in X-Vivo 20 media supplemented with 500 IU/ml IL-2 and 10% AB serum. The EwS cell lines (TC71, RH18X, LG) and the K562 cell line were grown in RPMI media supplemented with 10% FBS. NK cell viability, phenotype, and degranulation were measured by flow cytometry. EwS lysis was measured using 51 Cr release assays. Degradation of perforin to prevent tumor killing via the degranulation pathway was achieved by pre-treating NK cells for 2 hours with 100 nM concanamycin. Blocking antibodies against HLA-A,B,C antigens on EwS cells and against activation receptors on NK cells were added to the respective cells for 30-45 min prior to co-culture. In some experiments, EwS cells were pre-treated with 20 nM bortezomib for 24 hours prior to co-culture with NK cells. Statistical analysis was conducted using the Wilcoxon ranked sum test to determine significance. Results: Ex vivo expanded NK cells were highly cytotoxic against all three EwS cell lines tested, with killing levels comparable to those of the gold-standard NK cell target K562 cells. Suppression of the degranulation pathway using concanamycin revealed a significant reduction in the ability of NK cells to lyse EwS cells (65-71% at baseline vs 10-24% with concanamycin-treated NK cells). Blockade of HLA class I molecules on the EwS cell surface revealed a small but significant increase in NK cell degranulation from 30 to 37%, 32 to 40%, and 20 to 35% against the TC71, RH18X, and LG EwS lines respectively (p 〈 0.05). Based on experiments where individual activation receptors on ex vivo expanded NK cells were blocked with antibodies, we established that EwS killing by these cells was highly dependent on the expression of the NKG2D, DNAM-1, and NKp30 receptors. Although blockade of individual receptors significantly reduced NK cell killing of EwS cells, simultaneous blockade of all three receptors completely prevented NK cell degranulation. In an attempt to further bolster NK cell killing of EwS cells, we next pre-treated EwS cells with the proteasome inhibitor bortezomib to increase the expression of the TRAIL receptor DR5. While this approach increased DR5 expression by a median 2.09 fold (range 1.40-2.15) and enhanced the susceptibility of EwS cells to killing by recombinant TRAIL, surprisingly, no further killing was observed following co-culture with expanded NK cells. Preliminary data indicate the latter is explained by the rapid and efficient EwS killing induced by NK cell degranulation that triggers instant lysis in contrast to more delayed killing that is characteristic of the TRAIL pathways. Conclusions: Ex vivo expanded NK cells are able to rapidly and efficiently kill EwS cells at levels comparable to those of the gold-standard NK cell target K562 cells. Lysis of EwS by ex vivo expanded NK cells occurs exclusively through degranulation triggered by a relative lack of HLA class I expression combined with expression of ligands to the activating NK cell receptors NKG2D, DNAM-1, and NKp30. These data provide important insights that define the critical elements required by ex vivo expanded NK cells to mediate tumor responses against metastatic EwS following adoptive transfer in the clinic. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Signal Transduction and Targeted Therapy Vol. 8, No. 1 ( 2023-08-21)
    In: Signal Transduction and Targeted Therapy, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2023-08-21)
    Type of Medium: Online Resource
    ISSN: 2059-3635
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2886872-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Molecular Therapy, Elsevier BV, Vol. 22, No. 7 ( 2014-07), p. 1388-1395
    Type of Medium: Online Resource
    ISSN: 1525-0016
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2014
    detail.hit.zdb_id: 2001818-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Elsevier BV ; 2017
    In:  Seminars in Immunology Vol. 31 ( 2017-06), p. 20-29
    In: Seminars in Immunology, Elsevier BV, Vol. 31 ( 2017-06), p. 20-29
    Type of Medium: Online Resource
    ISSN: 1044-5323
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    detail.hit.zdb_id: 1471753-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Experimental Hematology & Oncology, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2019-12)
    Type of Medium: Online Resource
    ISSN: 2162-3619
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2669066-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 24, No. 8 ( 2018-04-15), p. 1834-1844
    Abstract: Purpose: To evaluate the safety, efficacy, and immunobiological correlates of allogeneic NK-cell–based therapy in primary chemotherapy-refractory or relapsed high-risk myelodysplastic syndrome (MDS), secondary AML (MDS/AML), and de novo AML patients. Experimental Design: Sixteen patients received fludarabine/cyclophosphamide conditioning combined with total lymphoid irradiation followed by adoptive immunotherapy with IL2–activated haploidentical NK cells. Results: NK-cell infusions were well-tolerated, with only transient adverse events observed in the 16 patients. Six patients achieved objective responses with complete remission (CR), marrow CR, or partial remission (PR). Five patients proceeded to allogeneic hematopoietic stem cell transplantation (HSCT). Three patients are still free from disease & gt;3 years after treatment. All evaluable patients with objective responses (5/5 evaluable) had detectable donor NK cells at days 7/14 following infusion and displayed reduction of tumor cell clones, some of which carried poor prognosis mutations. Residual lin−CD34+CD123+CD45RA+ blast cells in responders had increased total HLA class I and HLA-E expression. Responding patients displayed less pronounced activation of CD8+ T cells and lower levels of inflammatory cytokines following NK-cell infusion. Intriguingly, despite omission of systemic IL2, all patients displayed increased frequencies of activated Ki-67+CD127−FoxP3+CD25hiCD4+ Treg cells of recipient origin following NK-cell therapy. Conclusions: Overall, this study suggests that high-risk MDS is responsive to NK-cell therapy and supports the use of haploidentical NK-cell infusions as a bridge to HSCT in refractory patients. Objective clinical responses and reduction of high-risk clones were associated with detectable donor-derived NK cells, immunoediting of residual blast cells, and less pronounced host immune activation. Clin Cancer Res; 24(8); 1834–44. ©2018 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Molecular Imaging and Biology, Springer Science and Business Media LLC, Vol. 23, No. 6 ( 2021-12), p. 952-962
    Abstract: There is a need to better characterise cell-based therapies in preclinical models to help facilitate their translation to humans. Long-term high-resolution tracking of the cells in vivo is often impossible due to unreliable methods. Radiolabelling of cells has the advantage of being able to reveal cellular kinetics in vivo over time. This study aimed to optimise the synthesis of the radiotracers [ 89 Zr]Zr-oxine (8-hydroxyquinoline) and [ 89 Zr]Zr-DFO-NCS (p-SCN-Bn-Deferoxamine) and to perform a direct comparison of the cell labelling efficiency using these radiotracers. Procedures Several parameters, such as buffers, pH, labelling time and temperature, were investigated to optimise the synthesis of [ 89 Zr]Zr-oxine and [ 89 Zr]Zr-DFO-NCS in order to reach a radiochemical conversion (RCC) of 〉 95 % without purification. Radio-instant thin-layer chromatography (iTLC) and radio high-performance liquid chromatography (radio-HPLC) were used to determine the RCC. Cells were labelled with [ 89 Zr]Zr-oxine or [ 89 Zr]Zr-DFO-NCS. The cellular retention of 89 Zr and the labelling impact was determined by analysing the cellular functions, such as viability, proliferation, phagocytotic ability and phenotypic immunostaining. Results The optimised synthesis of [ 89 Zr]Zr-oxine and [ 89 Zr]Zr-DFO-NCS resulted in straightforward protocols not requiring additional purification. [ 89 Zr]Zr-oxine and [ 89 Zr]Zr-DFO-NCS were synthesised with an average RCC of 98.4 % (n = 16) and 98.0 % (n = 13), respectively. Cell labelling efficiencies were 63.9 % (n = 35) and 70.2 % (n = 30), respectively. 89 Zr labelling neither significantly affected the cell viability (cell viability loss was in the range of 1–8 % compared to its corresponding non-labelled cells, P value 〉 0.05) nor the cells’ proliferation rate. The phenotype of human decidual stromal cells (hDSC) and phagocytic function of rat bone-marrow-derived macrophages (rMac) was somewhat affected by radiolabelling. Conclusions Our study demonstrates that [ 89 Zr]Zr-oxine and [ 89 Zr]Zr-DFO-NCS are equally effective in cell labelling. However, [ 89 Zr]Zr-oxine was superior to [ 89 Zr]Zr-DFO-NCS with regard to long-term stability, cellular retention, minimal variation between cell types and cell labelling efficiency.
    Type of Medium: Online Resource
    ISSN: 1536-1632 , 1860-2002
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2079211-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Clinical Investigation, American Society for Clinical Investigation, Vol. 110, No. 10 ( 2002-11-15), p. 1515-1523
    Type of Medium: Online Resource
    ISSN: 0021-9738
    Language: English
    Publisher: American Society for Clinical Investigation
    Publication Date: 2002
    detail.hit.zdb_id: 2018375-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages