Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Functional Ecology, Wiley, Vol. 30, No. 2 ( 2016-02), p. 188-198
    Abstract: Analysing functional traits along environmental gradients can improve our understanding of the mechanisms structuring plant communities. Within forests, vertical gradients in light intensity, temperature and humidity are often pronounced. Vascular epiphytes are particularly suitable for studying the influence of these vertical gradients on functional traits because they lack contact with the soil and thus individual plants are entirely exposed to different environmental conditions, from the dark and humid understorey to the sunny and dry outer canopy. In this study, we analysed multiple aspects of the trait‐based ecology of vascular epiphytes: shifts in trait values with height above ground (as a proxy for vertical environmental gradients) at community and species level, the importance of intra‐ vs. interspecific trait variability, and trait differences among taxonomic groups. We assessed ten leaf traits for 1151 individuals belonging to 83 epiphyte species of all major taxonomic groups co‐occurring in a Panamanian lowland forest. Community mean trait values of many leaf traits were strongly correlated with height and particularly specific leaf area and chlorophyll concentration showed nonlinear, negative trends. Intraspecific trait variability was pronounced and accounted for one‐third of total observed trait variance. Intraspecific trait adjustments along the vertical gradient were common and seventy per cent of all species showed significant trait–height relationships. In addition, intraspecific trait variability was positively correlated with the vertical range occupied by species. We observed significant trait differences between major taxonomic groups (orchids, ferns, aroids, bromeliads). In ferns, for instance, leaf dry matter content was almost twofold higher than in the other taxonomic groups. This indicates that some leaf traits are taxonomically conserved. Our study demonstrates that vertical environmental gradients strongly influence functional traits of vascular epiphytes. In order to understand community composition along such gradients, it is central to study several aspects of trait‐based ecology, including both community and intraspecific trends of multiple traits.
    Type of Medium: Online Resource
    ISSN: 0269-8463 , 1365-2435
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 2020307-X
    detail.hit.zdb_id: 619313-4
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Elsevier BV ; 2021
    In:  Ecological Modelling Vol. 460 ( 2021-11), p. 109735-
    In: Ecological Modelling, Elsevier BV, Vol. 460 ( 2021-11), p. 109735-
    Type of Medium: Online Resource
    ISSN: 0304-3800
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 191971-4
    detail.hit.zdb_id: 2000879-X
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Oikos, Wiley, Vol. 128, No. 8 ( 2019-08), p. 1079-1091
    Abstract: Humans have elevated global extinction rates and thus lowered global scale species richness. However, there is no a priori reason to expect that losses of global species richness should always, or even often, trickle down to losses of species richness at regional and local scales, even though this relationship is often assumed. Here, we show that scale can modulate our estimates of species richness change through time in the face of anthropogenic pressures, but not in a unidirectional way. Instead, the magnitude of species richness change through time can increase, decrease, reverse, or be unimodal across spatial scales. Using several case studies, we show different forms of scale‐dependent richness change through time in the face of anthropogenic pressures. For example, Central American corals show a homogenization pattern, where small scale richness is largely unchanged through time, while larger scale richness change is highly negative. Alternatively, birds in North America showed a differentiation effect, where species richness was again largely unchanged through time at small scales, but was more positive at larger scales. Finally, we collated data from a heterogeneous set of studies of different taxa measured through time from sites ranging from small plots to entire continents, and found highly variable patterns that nevertheless imply complex scale‐dependence in several taxa. In summary, understanding how biodiversity is changing in the Anthropocene requires an explicit recognition of the influence of spatial scale, and we conclude with some recommendations for how to better incorporate scale into our estimates of change.
    Type of Medium: Online Resource
    ISSN: 0030-1299 , 1600-0706
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2025658-9
    detail.hit.zdb_id: 207359-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Wiley ; 2017
    In:  Ecography Vol. 40, No. 2 ( 2017-02), p. 267-280
    In: Ecography, Wiley, Vol. 40, No. 2 ( 2017-02), p. 267-280
    Abstract: Macroecology and biogeography are concerned with understanding biodiversity patterns across space and time. In the past, the two disciplines have addressed this question mainly with correlative approaches, despite frequent calls for more mechanistic explanations. Recent advances in computational power, theoretical understanding, and statistical tools are, however, currently facilitating the development of more system‐oriented, mechanistic models. We review these models, identify different model types and theoretical frameworks, compare their processes and properties, and summarize emergent findings. We show that ecological (physiology, demographics, dispersal, biotic interactions) and evolutionary processes, as well as environmental and human‐induced drivers, are increasingly modelled mechanistically; and that new insights into biodiversity dynamics emerge from these models. Yet, substantial challenges still lie ahead for this young research field. Among these, we identify scaling, calibration, validation, and balancing complexity as pressing issues. Moreover, particular process combinations are still understudied, and so far models tend to be developed for specific applications. Future work should aim at developing more flexible and modular models that not only allow different ecological theories to be expressed and contrasted, but which are also built for tight integration with all macroecological data sources. Moving the field towards such a ‘systems macroecology’ will test and improve our understanding of the causal pathways through which eco‐evolutionary processes create diversity patterns across spatial and temporal scales.
    Type of Medium: Online Resource
    ISSN: 0906-7590 , 1600-0587
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2024917-2
    detail.hit.zdb_id: 1112659-0
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Ecology Letters, Wiley, Vol. 22, No. 4 ( 2019-04), p. 674-684
    Abstract: Ecosystems respond in various ways to disturbances. Quantifying ecological stability therefore requires inspecting multiple stability properties, such as resistance, recovery, persistence and invariability. Correlations among these properties can reduce the dimensionality of stability, simplifying the study of environmental effects on ecosystems. A key question is how the kind of disturbance affects these correlations. We here investigated the effect of three disturbance types (random, species‐specific, local) applied at four intensity levels, on the dimensionality of stability at the population and community level. We used previously parameterized models that represent five natural communities, varying in species richness and the number of trophic levels. We found that disturbance type but not intensity affected the dimensionality of stability and only at the population level. The dimensionality of stability also varied greatly among species and communities. Therefore, studying stability cannot be simplified to using a single metric and multi‐dimensional assessments are still to be recommended.
    Type of Medium: Online Resource
    ISSN: 1461-023X , 1461-0248
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2020195-3
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Biogeography, Wiley, Vol. 46, No. 7 ( 2019-07), p. 1569-1581
    Abstract: The general dynamic model (GDM) of oceanic island biogeography predicts how biogeographical rates, species richness and endemism vary with island age, area and isolation. Here, we used a simulation model to assess whether the isolation‐related predictions of the GDM may arise from low‐level process at the level of individuals and populations. Location Hypothetical volcanic oceanic islands. Methods Our model considers (a) an idealized island ontogeny, (b) metabolic constraints and (c) stochastic, spatially explicit and niche‐based processes at the level of individuals and populations (plant demography, dispersal, competition, mutation and speciation). Isolation scenarios involved varying the distance to mainland and the dispersal ability of the species pool. Results For all isolation scenarios, we obtained humped temporal trends for species richness, endemic richness, proportion of endemic species derived from within‐island radiation, number of radiating lineages, number of species per radiating lineage and biogeographical rates. The proportion of endemics derived from mainland–island differentiation and of all endemics steadily increased over time. Extinction rates of endemic species peaked later than for non‐endemic species. Species richness and the number of endemics derived from mainland–island differentiation decreased with isolation as did rates of colonization, mainland–island differentiation and extinction. The proportion of all endemics and of radiated endemics, the number of radiated endemics, of radiating lineages, and of species per radiating lineage and the within‐island radiation rate all increased with isolation. Main conclusions Our results lend strong support to most of the isolation‐related GDM predictions. New insights include an increasing proportion of endemics, particularly those arising from mainland–island differentiation, across isolation scenarios, as well as extinction trends of endemics differing from the overall extinction rates, with a much later peak. These results demonstrate how simulation models focusing on low ecological levels provide tools to assess biogeographical‐scale predictions and to develop more detailed predictions for further empirical tests.
    Type of Medium: Online Resource
    ISSN: 0305-0270 , 1365-2699
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2020428-0
    detail.hit.zdb_id: 188963-1
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Public Library of Science (PLoS) ; 2022
    In:  PLOS Computational Biology Vol. 18, No. 9 ( 2022-9-15), p. e1010356-
    In: PLOS Computational Biology, Public Library of Science (PLoS), Vol. 18, No. 9 ( 2022-9-15), p. e1010356-
    Abstract: The ubiquitous use of computational work for data generation, processing, and modeling increased the importance of digital documentation in improving research quality and impact. Computational notebooks are files that contain descriptive text, as well as code and its outputs, in a single, dynamic, and visually appealing file that is easier to understand by nonspecialists. Traditionally used by data scientists when producing reports and informing decision-making, the use of this tool in research publication is not common, despite its potential to increase research impact and quality. For a single study, the content of such documentation partially overlaps with that of classical lab notebooks and that of the scientific manuscript reporting the study. Therefore, to minimize the amount of work required to manage all the files related to these contents and optimize their production, we present a starter kit to facilitate the implementation of computational notebooks in the research process, including publication. The kit contains the template of a computational notebook integrated into a research project that employs R, Python, or Julia. Using examples of ecological studies, we show how computational notebooks also foster the implementation of principles of Open Science, such as reproducibility and traceability. The kit is designed for beginners, but at the end we present practices that can be gradually implemented to develop a fully digital research workflow. Our hope is that such minimalist yet effective starter kit will encourage researchers to adopt this practice in their workflow, regardless of their computational background.
    Type of Medium: Online Resource
    ISSN: 1553-7358
    Language: English
    Publisher: Public Library of Science (PLoS)
    Publication Date: 2022
    detail.hit.zdb_id: 2193340-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    The Royal Society ; 2014
    In:  Proceedings of the Royal Society B: Biological Sciences Vol. 281, No. 1784 ( 2014-06-07), p. 20133246-
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 281, No. 1784 ( 2014-06-07), p. 20133246-
    Abstract: Island biogeographic studies traditionally treat single islands as units of analysis. This ignores the fact that most islands are spatially nested within archipelagos. Here, we took a fundamentally different approach and focused on entire archipelagos using species richness of vascular plants on 23 archipelagos worldwide and their 174 constituent islands. We assessed differential effects of biogeographic factors (area, isolation, age, elevation), current and past climate (temperature, precipitation, seasonality, climate change velocity) and intra-archipelagic spatial structure (archipelago area, number of islands, area range, connectivity, environmental volume, inter-island distance) on plant diversity. Species diversity of each archipelago ( γ ) was additively partitioned into α , β , nestedness and replacement β -components to investigate the relative importance of environmental and spatial drivers. Multiple regressions revealed strong effects of biogeography and climate on α and γ , whereas spatial factors, particularly number of islands, inter-island distance and area range, were key to explain β . Structural equation models additionally suggested that γ is predominantly determined by indirect abiotic effects via its components, particularly β . This highlights that β and the spatial arrangement of islands are essential to understand insular ecology and evolution. Our methodological framework can be applied more widely to other taxa and archipelago-like systems, allowing new insights into biodiversity origin and maintenance.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2014
    detail.hit.zdb_id: 1460975-7
    detail.hit.zdb_id: 209242-6
    SSG: 12
    SSG: 25
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Annals of Botany, Oxford University Press (OUP), Vol. 130, No. 1 ( 2022-07-19), p. 11-25
    Abstract: The entangled relationship of chromosome number and genome size with species distribution has been the subject of study for almost a century, but remains an open question due to previous ecological and phylogenetic knowledge constraints. To better address this subject, we used the clade Maxillariinae, a widely distributed and karyotypically known orchid group, as a model system to infer such relationships in a robust methodological framework. Methods Based on the literature and new data, we gathered the chromosome number and genome size for 93 and 64 species, respectively. We built a phylogenetic hypothesis and assessed the best macroevolutionary model for both genomic traits. Additionally, we collected together ecological data (preferences for bioclimatic variables, elevation and habit) used as explanatory variables in multivariate phylogenetic models explaining genomic traits. Finally, the impact of polyploidy was estimated by running the analyses with and without polyploids in the sample. Key Results The association between genomic and ecological data varied depending on whether polyploids were considered or not. Without polyploids, chromosome number failed to present consistent associations with ecological variables. With polyploids, there was a tendency to waive epiphytism and colonize new habitats outside humid forests. The genome size showed association with ecological variables: without polyploids, genome increase was associated with flexible habits, with higher elevation and with drier summers; with polyploids, genome size increase was associated with colonizing drier environments. Conclusions The chromosome number and genome size variations, essential but neglected traits in the ecological niche, are shaped in the Maxillariinae by both neutral and adaptive evolution. Both genomic traits are partially correlated to bioclimatic variables and elevation, even when controlling for phylogenetic constraints. While polyploidy was associated with shifts in the environmental niche, the genome size emerges as a central trait in orchid evolution by the association between small genome size and epiphytism, a key innovation to Neotropical orchid diversification.
    Type of Medium: Online Resource
    ISSN: 0305-7364 , 1095-8290
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1461328-1
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Diversity and Distributions, Wiley, Vol. 27, No. 7 ( 2021-07), p. 1180-1193
    Abstract: High levels of nitrogen deposition have been responsible for important losses of plant species diversity. It is often assumed that reduction of ammonia and nitrogen oxide emissions will result in the recovery of the former biodiversity. In Western Europe, N deposition peaked between 1980 and 1988 and declined thereafter. In a 60‐year experiment in hay meadows, we tested the hypothesis that increasing and declining nitrogen deposition had negative, respectively, positive effects on plant species diversity. Location Wageningen, the Netherlands. Method Duplicated plots received different fertilization treatments from 1958 onwards (control, Ca, K, P, PK, N, NPK). Productivity, soil pH and species composition were measured at regular intervals. In the control plots, the correlations between N deposition, diversity, production and soil acidification were analysed. Subsequently, we tested whether the treatment effects (e.g. N addition and liming) confirmed the hypothesized interactions. Results In the control plots, soil pH, species diversity and the abundance of legumes and short forbs declined between 1958 and 1987 when atmospheric N deposition was high but recovered after 1987 when N deposition decreased. However, also in the N addition plots species diversity recovered partly after 1987, although the soil pH of the acidified soils in these plots did not. In addition, also in the limed plots diversity decreased rapidly during the first 30 years while in this treatment soil acidification was more than compensated. Main conclusions We conclude that declining N deposition resulted in the recovery of plant species diversity, but not in recovery of the former species composition. Time appears to be an additional, but crucial factor for the recovery of diverse, flowering meadows. Species not adapted to the new management conditions created at the start of the experiment disappeared during the first decades, while species fit for the new environment needed many years to establish.
    Type of Medium: Online Resource
    ISSN: 1366-9516 , 1472-4642
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2020139-4
    detail.hit.zdb_id: 1443181-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages