Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Growth Factors, Informa UK Limited, Vol. 28, No. 2 ( 2010-04), p. 98-103
    Type of Medium: Online Resource
    ISSN: 0897-7194 , 1029-2292
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2010
    detail.hit.zdb_id: 2076728-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Informa UK Limited ; 2009
    In:  Growth Factors Vol. 27, No. 4 ( 2009-01-01), p. 203-213
    In: Growth Factors, Informa UK Limited, Vol. 27, No. 4 ( 2009-01-01), p. 203-213
    Type of Medium: Online Resource
    ISSN: 0897-7194 , 1029-2292
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2009
    detail.hit.zdb_id: 2076728-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Informa UK Limited ; 2011
    In:  Growth Factors Vol. 29, No. 2-3 ( 2011-04), p. 94-101
    In: Growth Factors, Informa UK Limited, Vol. 29, No. 2-3 ( 2011-04), p. 94-101
    Type of Medium: Online Resource
    ISSN: 0897-7194 , 1029-2292
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2011
    detail.hit.zdb_id: 2076728-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: European Journal of Heart Failure, Wiley, Vol. 5, No. 2 ( 2003-03), p. 165-170
    Type of Medium: Online Resource
    ISSN: 1388-9842
    Language: English
    Publisher: Wiley
    Publication Date: 2003
    detail.hit.zdb_id: 1500332-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Liver International, Wiley, Vol. 41, No. 9 ( 2021-09), p. 2171-2178
    Abstract: Porto‐sinusoidal vascular disease (PSVD) is a rare disease that requires excluding cirrhosis and other causes of portal hypertension for its diagnosis because it lacks a specific diagnostical test. Although it has been occasionally associated with autoimmune diseases, the pathophysiology of PSVD remains unknown. The aim of this study was to evaluate the potential role of autoimmunity in the pathophysiology and diagnosis of PSVD. Methods Thirty‐seven consecutive patients with PSVD and 39 with cirrhosis matched by gender, signs of portal hypertension and liver function were included (training set). By using Indirect Immunofluorescence, ELISA and slot‐blot methods data 22 autoantibodies were identified in patients with PSVD and cirrhosis. Presence of anti‐endothelial cells antibodies (AECA) was assayed by a cell‐based ELISA. Thirty‐one PSVD, 40 cirrhosis patients, 15 patients with splenomegaly associated with haematological disease and 14 healthy donors were included in a validation set. Findings The proportion of patients with at least one positive antibody was statistically significantly higher in patients with PSVD compared with cirrhosis (92% vs 56%; P   〈  .01). Specifically, AECA were significantly more frequent in PSVD than in cirrhosis (38% vs 15%; P  = .013). Results were confirmed in the validation set. In the overall population, presence of AECA had a 63% positive predictive value for diagnosing PSVD and a 71% negative predictive value, with a specificity of 94% when the 1/16 level is used as cut‐off. AECA positive serum samples react with a 68‐72 kDa protein of human liver endothelial sinusoidal cells.
    Type of Medium: Online Resource
    ISSN: 1478-3223 , 1478-3231
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2124684-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society of Hematology ; 2015
    In:  Blood Vol. 126, No. 23 ( 2015-12-03), p. 756-756
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 756-756
    Abstract: β-thalassemia arises as a result of mutations in the β-globin gene. As a consequence erythropoiesis, the process that insures the daily generation of billions of red blood cells (RBCs), becomes disrupted. Ineffective erythropoiesis is a major contributor to the β-thalassemic anemia and is partially due to aberrant apoptosis during late stages of erythroid maturation. Despite the importance of apoptosis, the underlying molecular mechanisms regulating this process in β-thalassemia erythroblasts are not fully elucidated. One potential mechanism involves the transcription factor Foxo3, which under specific contexts can act as a positive regulator of apoptosis, but is also an essential transcriptional regulator of terminal erythroblast maturation. Foxo3 has a range of outputs that it can execute from sustaining cellular integrity by mitigating oxidative stress to inducing apoptosis under conditions of overwhelming stress. Given these functions, we sought to determine if Foxo3 played a role in maintaining RBC maturation in β-thalassemic mice. To address this, we used Hbbth3/+ (th3/+) mice that display a phenotype similar to β-thalassemia intermedia, and produced double mutant Foxo3-/-/Th3/+ mice. The th3/+ mice display a mild erythroblast apoptotic phenotype. We hypothesized that loss of Foxo3 may exacerbate the β-thalassemic phenotype. On the contrary, we found that loss of Foxo3 in a β-thalassemic background improved RBC numbers and hemoglobin concentration (by 1g/dl, n=10 mice) in double mutant mice compared to th3/+ mice. Furthermore, double mutant mice had a statistically significant lower frequency of apoptosis (2 fold less) during bone marrow erythroblast maturation as measured by flow cytometry analysis of annexin V-binding and 7AAD staining in distinct erythroblast stages resolved by TER119, CD44 and cell size (n=3 mice per genotype). We predicted that high levels of oxidative stress may prematurely activate FOXO3 during erythroblast maturation in β-thalassemic mice. In turn, activated FOXO3 may potentially promote apoptosis in these cells. To evaluate this, we examined FOXO3 levels by qRT-PCR and immunofluorescence in FACS sorted populations of erythroblasts (TER119+,CD44,FSC) or erythroid progenitors (TER119-,c-KIT+,CD71HI) acquired from bone marrow of at least 3 mice per genotype. Our data show increased mRNA levels of Foxo3 in early erythroblasts, corresponding to increased FOXO3 protein expression in erythroid progenitors from β-thalassemic mice relative to wild-type mice. We also examined the activation status of p53, as it is also a major regulator of apoptosis that can be triggered by oxidative stress. Nuclear p53 levels were greater in β-thalassemic as compared to wild-type erythroid progenitors based on immunofluorescence analysis of sorted cells from bone marrow of 3 mice per genotype. These results suggest a higher level of active p53 in β-thalassemic erythroid progenitors. Our results provide evidence that FOXO3, a factor normally critical for erythroblast maturation, may cooperate with aberrantly active p53 to induce apoptosis in β-thalassemic erythroblasts. In support of this, downstream p53 targets including Gadd45a and p21 that are also Foxo3 targets were significantly upregulated in β-thalassemic erythroblasts relative to wild-type erythroblasts as determined by qRT-PCR of cDNA produced from 3 mice per genotype. To more closely examine the mechanism of decreased apoptosis in double mutant Foxo3-/-/Th3/+ erythroblasts, we compared the expression of multiple genes involved in apoptosis by qRT-PCR of sorted erythroblast populations from at least 3 mice per genotype. We found multiple pro-apoptotic genes including, Cycs, Tnfsf10, Puma, and Bim expressed at significantly lower levels at various erythroblast stages in double mutant compared to β-thalassemic erythroblasts. Together, our data suggests Foxo3 becomes inappropriately and prematurely activated in erythroid progenitors and early erythroblasts in the context of β-thalassemia and cooperates with p53 to promote apoptosis. These findings raise the possibility that cooperation of Foxo3 and p53 in β-thalassemic erythroblasts might contribute to the ineffective erythropoiesis of β-thalassemic mice. They also suggest the possibility that as a homeostatic maintaining factor, Foxo3 behaves differently in the context of disease. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Society of Hematology ; 2013
    In:  Blood Vol. 122, No. 21 ( 2013-11-15), p. 3416-3416
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 3416-3416
    Abstract: Transcriptional control of last stages of erythropoiesis is a complex and well orchestrated process controlled by lineage-specific transcription factors. The precise contribution of the different transcription factors to this multistep process has not been fully elucidated. Foxo3 is a transcription factor that is required for terminal erythroid maturation and Foxo3 mutant mice exhibit ineffective erythropoiesis. In order to gain further insight into the contribution of Foxo3 to the control of adult terminal erythroid maturation we analyzed the transcriptome of three adult bone marrow erythroid precursor populations: pro-, basophilic and polychromatophilic erythroblasts from wild type and Foxo3-/- mice. Populations were FACS sorted according to their TER119 and CD44 cell surface expression and FSC properties. RNA was then isolated and sequenced using the Illumina GaII platform. Genes were grouped into 3 categories according to their expression during erythroid cell maturation using the Short Time Series Expression Miner (STEM) program: no change (4577 genes), down-regulated (2868 genes) or up-regulated (2637) (Figure 1). Enrichment analysis of groups of genes using the ChEA database identified Myb, Meis1, Runx1, Fli1 and PU.1 as the main transcription factors regulating gene repression over erythroid maturation. In contrast, ChEA identified known erythroid transcription factors like Gata1, Eklf and Tal1 to drive the up-regulation of many of the erythroid-specific genes. This analysis also enabled the identification of putative novel transcription factors implicated in erythroid cell maturation. Interestingly, the difference between WT and Foxo3-/- cells increased gradually from pro- to polychromatophilic erythroblasts in correlation with increased Foxo3 expression during these steps of maturation. Strikingly, pathway enrichment analysis detected several immune-related pathways such as Toll-like receptors, TGF-β and IL-1 signaling as expressed in maturing wild type erythroid cells and significantly deregulated in Foxo3-/- cells. The expression of a number of these immune genes in erythroid cells has been validated by qRT-PCR. In addition, among others, a cluster of genes from the autophagy pathway was noted to be significantly down-regulated in Foxo3 mutant erythroid cells. In order to better dissect Foxo3 transcriptional control during erythroid maturation, STEM analysis of Foxo3-/- samples revealed an unexpected number of differences compared to WT. Most remarkably the STEM analysis identified that 90% of the 1198 genes that are continuously up-regulated during erythroid maturation from pro- to polychromatophilic are highly compromised in their level of expression during erythroid maturation in the absence of Foxo3. Interestingly, this group was also enriched for Foxo3 direct target genes as determined by ChIP-seq studies. We also identified a subset of genes whose expression increased from pro- to basophilic erythroblasts but decreased thereafter in the absence of Foxo3 in contrast to wild type cells. Interestingly, ChEA analysis on this group identified a subset of genes that are targets of Gata1, Eklf and Tal1 that may require Foxo3 for their full expression at the last stages of erythroid cell maturation. In conclusion, we present an unbiased genome-wide approach using RNA sequencing of adult bone marrow erythroid cells to study the contribution of Foxo3 to the regulation of gene expression at the last stages of erythroid cell maturation. This analysis enabled us to identify novel genes and pathways whose function in the control of red cell generation requires further investigations.Fig. 1Genes with FPKM 〉 2 from WT and Foxo3-/- samples analyzed with the STEM software, divided into 6 different categories according to their expression profiles during terminal erythroid cell maturation from pro- to polychromatophillic erythroblasts. Genes were then further grouped in 3 subsets: down-regulated, up-regulated and no change. The number of genes in each profile is indicated at the bottom for wild type and Foxo3-/- samples.Fig. 1. Genes with FPKM 〉 2 from WT and Foxo3-/- samples analyzed with the STEM software, divided into 6 different categories according to their expression profiles during terminal erythroid cell maturation from pro- to polychromatophillic erythroblasts. Genes were then further grouped in 3 subsets: down-regulated, up-regulated and no change. The number of genes in each profile is indicated at the bottom for wild type and Foxo3-/- samples. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Hepatology, Elsevier BV, Vol. 67, No. 6 ( 2017-12), p. 1222-1231
    Type of Medium: Online Resource
    ISSN: 0168-8278
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    detail.hit.zdb_id: 2027112-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 14_Supplement ( 2016-07-15), p. 2388-2388
    Abstract: Background and aims: Molecular heterogeneity in hepatocellular carcinoma (HCC) is ill-defined since trunk drivers (early events; common to all cells), branch drivers (later events; present in a subset of cells) and passenger mutations (not relevant), have not been thoroughly described. Most FDA/EMA approved molecular drugs target trunk drivers. We explored heterogeneity by analyzing trunk vs branch mutations in different HCC regions within single and multinodular tumours. Methods: Intra-tumoral heterogeneity was assessed in 21 patients with single HCCs (size & gt; 4cm; 2 regions/tumour: 42 samples) and inter-tumoral heterogeneity was studied in 17 patients with multinodular HCCs (2-3 nodules/patient; total: 39 samples). Gene expression profiling, SNP array and deep-sequencing (coverage ∼850x) assessing 6 oncodrivers (TERT promoter, TP53, CTNNB1, ARID1A, AXIN1-2 by TruSeqAmplicon, validated by sanger) were explored. Clonality differentiating metastatic (clonal) vs synchronic (non-clonal) tumours was defined by SNP profiles. Trunk mutations were defined as present in a) all regions of a given tumour, or b) in all nodules of metastatic-clonal tumours; all other were considered as branch. Results: Intra-tumoral heterogeneity assessed by sequencing identified at least 1 oncodriver in 19/21 patients with single tumours. Among those, trunk mutations accounted for 17/19 (90%), and branch for 2/19 cases. Overall 63 mutations were identified, 56 (90%) were identical in different tumoral regions (i.e. truncal; TERT promoter most prevalent). Inter-tumoral heterogeneity explored by SNP profiles defined metastases in 35% (6/17 multinodular cases) and synchronous tumors in 65% (11/17 cases). Genetic proximity confirmed clonality in all metastatic nodules. Regarding molecular subclasses, half of clonal tumours retained identical molecular fingerprint, but the other half switched to more aggressive subclass. All non-clonal tumours belonged to distinct molecular subclasses. Driver oncogenes were explored in 9 patients (5 metastasis and 4 synchronic). Metastatic tumours showed 13 mutations, among which 11 (85%) were truncal. Mutations in non-clonal synchronic tumours were distinct. Conclusions: Single large HCCs shared common trunk drivers at distinct regions (90%). Similarly, 40% of multinodular tumours were clonal (metastasis) and shared common trunk oncodrivers, while 60% were synchronic, with distinct genomic profile/oncodrivers. Further studies at single-cell sequencing level are recommended. Citation Format: Daniela Sia, Andrew Neelis Harrington, Sara Torrecilla, Zhongyang Zhang, Genis Camprecios, Agrin Moeini, Sara Toffanin, Maria Isabel Fiel, Ke Hao, Monica Higuera, Laia Cabellos, Helena Cornella, Milind Mahajan, Yujin Hoshida, Augusto Villanueva, Sander Florman, Myron Schwartz, Josep Maria Llovet. Molecular heterogeneity and trunk driver mutations in hepatocellular carcinoma. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 2388.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: American Journal of Hematology, Wiley, Vol. 89, No. 10 ( 2014-10), p. 954-963
    Abstract: Ineffective erythropoiesis is observed in many erythroid disorders including β‐thalassemia and anemia of chronic disease in which increased production of erythroblasts that fail to mature exacerbate the underlying anemias. As loss of the transcription factor FOXO3 results in erythroblast abnormalities similar to the ones observed in ineffective erythropoiesis, we investigated the underlying mechanisms of the defective Foxo3 −/− erythroblast cell cycle and maturation. Here we show that loss of Foxo3 results in overactivation of the JAK2/AKT/mTOR signaling pathway in primary bone marrow erythroblasts partly mediated by redox modulation. We further show that hyperactivation of mTOR signaling interferes with cell cycle progression in Foxo3 mutant erythroblasts. Importantly, inhibition of mTOR signaling, in vivo or in vitro enhances significantly Foxo3 mutant erythroid cell maturation. Similarly, in vivo inhibition of mTOR remarkably improves erythroid cell maturation and anemia in a model of β‐thalassemia. Finally we show that FOXO3 and mTOR are likely part of a larger metabolic network in erythroblasts as together they control the expression of an array of metabolic genes some of which are implicated in erythroid disorders. These combined findings indicate that a metabolism‐mediated regulatory network centered by FOXO3 and mTOR control the balanced production and maturation of erythroid cells. They also highlight physiological interactions between these proteins in regulating erythroblast energy. Our results indicate that alteration in the function of this network might be implicated in the pathogenesis of ineffective erythropoiesis. Am. J. Hematol. 89:954–963, 2014. © 2014 Wiley Periodicals, Inc.
    Type of Medium: Online Resource
    ISSN: 0361-8609 , 1096-8652
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 1492749-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages