Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Monthly Notices of the Royal Astronomical Society Vol. 523, No. 2 ( 2023-05-30), p. 3069-3089
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 523, No. 2 ( 2023-05-30), p. 3069-3089
    Abstract: HIP 9618 (HD 12572, TOI-1471, TIC 306263608) is a bright (G = 9.0 mag) solar analogue. TESS photometry revealed the star to have two candidate planets with radii of 3.9 ± 0.044 R⊕ (HIP 9618 b) and 3.343 ± 0.039 R⊕ (HIP 9618 c). While the 20.77291 d period of HIP 9618 b was measured unambiguously, HIP 9618 c showed only two transits separated by a 680-d gap in the time series, leaving many possibilities for the period. To solve this issue, CHEOPS performed targeted photometry of period aliases to attempt to recover the true period of planet c, and successfully determined the true period to be 52.56349 d. High-resolution spectroscopy with HARPS-N, SOPHIE, and CAFE revealed a mass of 10.0 ± 3.1M⊕ for HIP 9618 b, which, according to our interior structure models, corresponds to a $6.8\pm 1.4~{{\ \rm per\ cent}}$ gas fraction. HIP 9618 c appears to have a lower mass than HIP 9618 b, with a 3-sigma upper limit of & lt;18M⊕. Follow-up and archival RV measurements also reveal a clear long-term trend which, when combined with imaging and astrometric information, reveal a low-mass companion ($0.08^{+0.12}_{-0.05} M_\odot$) orbiting at $26.0^{+19.0}_{-11.0}$ au. This detection makes HIP 9618 one of only five bright (K & lt; 8 mag) transiting multiplanet systems known to host a planet with P & gt; 50 d, opening the door for the atmospheric characterization of warm (Teq & lt; 750 K) sub-Neptunes.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 658 ( 2022-2), p. A136-
    Abstract: Context. Because of its proximity to an active K-type star, the hot Jupiter WASP-80b has been identified as a possible excellent target for detecting and measuring He  I absorption in the upper atmosphere. Aims. Our aim was to look for, and eventually measure and model, metastable He  I atmospheric absorption. Methods. We observed four primary transits of WASP-80b in the optical and near-infrared using the HARPS-N and GIANO-B high-resolution spectrographs attached to the Telescopio Nazionale Galileo telescope, focusing the analysis on the He  I triplet. We further employed a three-dimensional hydrodynamic aeronomy model to understand the observational results. Results. We did not find any signature of planetary absorption at the position of the He  I triplet with an upper limit of 0.7% (i.e. 1.11 planetary radii; 95% confidence level). We re-estimated the high-energy stellar emission, which we combined with a stellar photospheric model, to generate the input for the hydrodynamic modelling. We determined that, assuming a solar He to H abundance ratio, He  I absorption should have been detected. Considering a stellar wind 25 times weaker than solar, we could reproduce the non-detection only by assuming a He to H abundance ratio about 16 times smaller than solar. Instead, considering a stellar wind ten times stronger than solar, we could reproduce the non-detection only with a He to H abundance ratio about ten times smaller than solar. We attempted to understand this result by collecting all past He  I measurements and looking for correlations with high-energy stellar emission and planetary gravity, but without success. Conclusions. WASP-80b is not the only planet with an estimated sub-solar He to H abundance ratio, which suggests the presence of efficient physical mechanisms (e.g. phase separation, magnetic fields) capable of significantly modifying the He to H content in the upper atmosphere of hot Jupiters. The planetary macroscopic properties and the shape of the stellar spectral energy distribution are not sufficient for predicting the presence or absence of detectable metastable He in a planetary atmosphere, since the He abundance also appears to play a major role.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 514, No. 2 ( 2022-06-11), p. 1606-1627
    Abstract: We present the discovery and characterization of two transiting planets observed by TESS in the light curves of the young and bright (V = 9.67) star HD73583 (TOI-560). We perform an intensive spectroscopic and photometric space- and ground-based follow-up in order to confirm and characterize the system. We found that HD73583 is a young (∼500 Myr) active star with a rotational period of 12.08 ± 0.11  d, and a mass and radius of 0.73 ± 0.02 M⊙ and 0.65 ± 0.02 R⊙, respectively. HD 73583 b (Pb = $6.3980420 _{ - 0.0000062 } ^ { + 0.0000067 }$ d) has a mass and radius of $10.2 _{ - 3.1 } ^ { + 3.4 }$ M⊕ and 2.79 ± 0.10 R⊕, respectively, which gives a density of $2.58 _{ - 0.81 } ^ { + 0.95 }$ ${\rm g\, cm^{-3}}$. HD 73583 c (Pc = $18.87974 _{ - 0.00074 } ^ { + 0.00086 }$ d) has a mass and radius of $9.7 _{ - 1.7 } ^ { + 1.8 }$ M⊕ and $2.39 _{ - 0.09 } ^ { + 0.10 }$ R⊕, respectively, which translates to a density of $3.88 _{ - 0.80 } ^ { + 0.91 }$ ${\rm g\, cm^{-3}}$. Both planets are consistent with worlds made of a solid core surrounded by a volatile envelope. Because of their youth and host star brightness, they both are excellent candidates to perform transmission spectroscopy studies. We expect ongoing atmospheric mass-loss for both planets caused by stellar irradiation. We estimate that the detection of evaporating signatures on H and He would be challenging, but doable with present and future instruments.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 673 ( 2023-5), p. A37-
    Abstract: Aims . We aim to constrain the origin of the non-detection of the metastable He  I triplet at ≈10 830 Å obtained for the hot Jupiter WASP-80b. Methods . We measure the X-ray flux of WASP-80 from archival observations and use it as input to scaling relations accounting for the coronal [Fe/O] abundance ratio in order to infer the extreme-ultraviolet (EUV) flux in the 200–504 Å range, which controls the formation of metastable He  I . We run three-dimensional (magneto) hydrodynamic simulations of the expanding planetary upper atmosphere interacting with the stellar wind to study the impact on the He  I absorption of the stellar high-energy emission, the He/H abundance ratio, the stellar wind, and the possible presence of a planetary magnetic field up to 1 G. Results . For low-stellar-EUV emission, which is favoured by the measured log R ′ HK value, the He  I non-detection can be explained by a solar He/H abundance ratio in combination with a strong stellar wind, by a subsolar He/H abundance ratio, or by a combination of the two. For a high stellar EUV emission, the non-detection implies a subsolar He/H abundance ratio. A planetary magnetic field is unlikely to be the cause of the non-detection. Conclusions . The low-EUV stellar flux driven by the low [Fe/O] coronal abundance is the likely primary cause of the He  I non-detection. High-quality EUV spectra of nearby stars are urgently needed to improve the accuracy of high-energy emission estimates, which would then enable the employment of observations to constrain the planetary He/H abundance ratio and the stellar wind strength. This would greatly enhance the information that can be extracted from He  I atmospheric characterisation observations.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Monthly Notices of the Royal Astronomical Society Vol. 505, No. 4 ( 2021-06-25), p. 4684-4701
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 505, No. 4 ( 2021-06-25), p. 4684-4701
    Abstract: We present the discovery and characterization of two sub-Neptunes in close orbits, as well as a tentative outer planet of a similar size, orbiting TOI-1260 – a low metallicity K6 V dwarf star. Photometry from Transiting Exoplanet Survey Satellite(TESS) yields radii of Rb = 2.33 ± 0.10 and Rc = 2.82 ± 0.15 R⊕, and periods of 3.13 and 7.49 d for TOI-1260 b and TOI-1260 c, respectively. We combined the TESS data with a series of ground-based follow-up observations to characterize the planetary system. From HARPS-N high-precision radial velocities we obtain Mb = $8.6 _{ - 1.5 } ^ { + 1.4 }$ and Mc = $11.8 _{ - 3.2 } ^ { + 3.4 }$ M⊕. The star is moderately active with a complex activity pattern, which necessitated the use of Gaussian process regression for both the light-curve detrending and the radial velocity modelling, in the latter case guided by suitable activity indicators. We successfully disentangle the stellar-induced signal from the planetary signals, underlining the importance and usefulness of the Gaussian process approach. We test the system’s stability against atmospheric photoevaporation and find that the TOI-1260 planets are classic examples of the structure and composition ambiguity typical for the 2–3 R⊕ range.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 613 ( 2018-5), p. A41-
    Abstract: Context. The measurement of the orbital obliquity of hot Jupiters with different physical characteristics can provide clues to the mechanisms of migration and orbital evolution of this particular class of giant exoplanets. Aims. We aim to derive the degree of alignment between planetary orbit and stellar spin angular momentum vectors and look for possible links with other orbital and fundamental physical parameters of the star-planet system. We focus on the characterisation of five transiting planetary systems (HAT-P-3, HAT-P-12, HAT-P-22, WASP-39, and WASP-60) and the determination of their sky-projected planet orbital obliquity through the measurement of the Rossiter–McLaughlin effect. Methods. We used HARPS-N high-precision radial velocity measurements, gathered during transit events, to measure the Rossiter–McLaughlin effect in the target systems and determine the sky-projected angle between the planetary orbital plane and stellar equator. The characterisation of stellar atmospheric parameters was performed by exploiting the HARPS-N spectra, using line equivalent width ratios and spectral synthesis methods. Photometric parameters of the five transiting exoplanets were re-analysed through 17 new light curves, obtained with an array of medium-class telescopes, and other light curves from the literature. Survey-time-series photometric data were analysed for determining the rotation periods of the five stars and their spin inclination. Results. From the analysis of the Rossiter–McLaughlin effect we derived a sky-projected obliquity of λ = 21.2° ± 8.7°, λ = −54° −13° +41° , λ = −2.1° ± 3.0°, λ = 0° ± 11°, and λ = −129° ± 17° for HAT-P-3 b, HAT-P-12 b, HAT-P-22 b, WASP-39 b, and WASP-60 b, respectively. The latter value indicates that WASP-60 b is moving on a retrograde orbit. These values represent the first measurements of λ for the five exoplanetary systems under study. The stellar activity of HAT-P-22 indicates a rotation period of 28.7 ± 0.4 days, which allowed us to estimate the true misalignment angle of HAT-P-22 b, ψ = 24° ± 18°. The revision of the physical parameters of the five exoplanetary systems returned values that are fully compatible with those existing in the literature. The exception to this is the WASP-60 system, for which, based on higher quality spectroscopic and photometric data, we found a more massive and younger star and a larger and hotter planet.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 677 ( 2023-9), p. A12-
    Abstract: TOI-1416 (BD+42 2504, HIP 70705) is a V =10 late G- or early K-type dwarf star. TESS detected transits in its Sectors 16, 23, and 50 with a depth of about 455 ppm and a period of 1.07 days. Radial velocities (RVs) confirm the presence of the transiting planet TOI-1416 b , which has a mass of 3.48 ± 0.47 M ⊕ and a radius of 1.62 ± 0.08 R ⊕ , implying a slightly sub-Earth density of 4.50 −0.83 +0.99 g cm −3 . The RV data also further indicate a tentative planet, c , with a period of 27.4 or 29.5 days, whose nature cannot be verified due to strong suspicions of contamination by a signal related to the Moon’s synodic period of 29.53 days. The nearly ultra-short-period planet TOI-1416 b is a typical representative of a short-period and hot ( T eq ≈ 1570 K) super-Earth-like planet. A planet model of an interior of molten magma containing a significant fraction of dissolved water provides a plausible explanation for its composition, and its atmosphere could be suitable for transmission spectroscopy with JWST. The position of TOI-1416 b within the radius-period distribution corroborates the idea that planets with periods of less than one day do not form any special group. It instead implies that ultra-short-period planets belong to a continuous distribution of super-Earth-like planets with periods ranging from the shortest known ones up to ≈30 days; their period-radius distribution is delimited against larger radii by the Neptune Desert and by the period-radius valley that separates super-Earths from sub-Neptune planets. In the abundance of small, short-periodic planets, a notable plateau has emerged between periods of 0.6–1.4 days, which is compatible with the low-eccentricity formation channel. For the Neptune Desert, its lower limits required a revision due to the increasing population of short-period planets; for periods shorter then 2 days, we establish a radius of 1.6 R ⊕ and a mass of 0.028 M jup (corresponding to 8.9 M ⊕ ) as the desert’s lower limits. We also provide corresponding limits to the Neptune Desert against the planets’ insolation and effective temperatures.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 641 ( 2020-9), p. A68-
    Abstract: Context. With the growth of comparative exoplanetology, it is becoming increasingly clear that investigating the relationships between inner and outer planets plays a key role in discriminating between competing formation and evolution models. To do so, it is important to probe the inner region of systems that host long-period giants in search of undetected lower-mass planetary companions. Aims. In this work, we present our results on the K-dwarf star BD-11 4672, which is already known to host a long-period giant planet, as the first output of a subsample of the GAPS programme specifically aimed at assessing the impact of inefficient migration of planets formed beyond the snowline by searching for Neptune-mass and super-Earth planetary companions of known longer-period giants. Methods. We used the high-precision HARPS-N observations of BD-11 4672 in conjunction with time series taken from the literature in order to search for additional inner planetary signals to be fitted using differential evolution Markov chain Monte Carlo. The long-term stability of the new orbital solutions was tested with N -body dynamical simulations. Results. We report the detection of BD-11 4672 c, a new Neptune-mass planet with an orbital period of 74.20 −0.08 +0.06 d, eccentricity of 0.40 −0.15 +0.13 , semimajor axis of 0.30 ± 0.01 au, and minimum mass 15.37 −2.81 +2.97 M ⊕ , orbiting slightly outside the inner edge of the optimistic circumstellar habitable zone. In order to assess its impact on the dynamical stability of the habitable zone, we computed the angular momentum deficit of the system, showing that planet c has a severe negative impact on the stability of possible additional lower-mass temperate planets. The BD-11 4672 system is notable for its architecture, hosting both a long-period giant planet and an inner lower-mass planet, the latter being one of the most eccentric Neptune-mass planets known at similar periods.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 621 ( 2019-1), p. A110-
    Abstract: Context. Statistical studies of exoplanets have shown that giant planets are more commonly hosted by metal-rich dwarf stars than low-metallicity stars, while no such correlation is evident for lower mass planets. The search for giant planets around metal-poor stars and the estimate of their occurrence f p is an important element in providing support to models of planet formation. Aims. We present results from the HARPS-N search for giant planets orbiting metal-poor (− 1.0 ≤[Fe/H] ≤−0.5 dex) stars in the northern hemisphere, complementing a previous HARPS survey on southern stars in order to update the estimate of f p . Methods. High-precision HARPS-N observations of 42 metal-poor stars were used to search for planetary signals to be fitted using differential evolution Markov chain Monte Carlo single-Keplerian models. We then joined our detections to the results of the previous HARPS survey on 88 metal-poor stars to provide a preliminary estimate of the two-hemisphere f p . Results. We report the detection of two new giant planets around HD 220197 and HD 233832. The first companion has Msin i = 0.20 −0.04 +0.07 M Jup and an orbital period of 1728 −80 +162 days, and for the second companion, we find two solutions of equal statistical weight with periods of 2058 −40 +47 and 4047 −117 +91 days and minimum masses of 1.78 −0.06 +0.08 and 2.72 −0.23 +0.23 M Jup , respectively. Joining our two detections with the three from the southern survey, we obtain a preliminary and conservative estimate of the global frequency of f p = 3.84 −1.06 +2.45 % for giant planets around metal-poor stars. Conclusions. The two new giant planets orbit dwarf stars at the metal-rich end of the HARPS-N metal-poor sample. This corroborates previous results that suggested that giant planet frequency is still a rising function of the host star [Fe/H]. We also note that all detections in the overall sample are giant long-period planets.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 642 ( 2020-10), p. A133-
    Abstract: Context. Detecting and characterising exoworlds around very young stars (age ≤10 Myr) are key aspects of exoplanet demographic studies, especially for understanding the mechanisms and timescales of planet formation and migration. Any reliable theory for such physical phenomena requires a robust observational database to be tested. However, detection using the radial velocity method alone can be very challenging because the amplitude of the signals caused by the magnetic activity of such stars can be orders of magnitude larger than those induced even by massive planets. Aims. We observed the very young (~2 Myr) and very active star V830 Tau with the HARPS-N spectrograph between October 2017 and March 2020 to independently confirm and characterise the previously reported hot Jupiter V830 Tau b ( K b = 68 ± 11 m s −1 ; m b sin i b = 0.57 ± 0.10 M Jup ; P b = 4.927 ± 0.008 d). Methods. Because of the observed ~1 km s −1 radial velocity scatter that can clearly be attributed to the magnetic activity of V830 Tau, we analysed radial velocities extracted with different pipelines and modelled them using several state-of-the-art tools. We devised injection-recovery simulations to support our results and characterise our detection limits. The analysis of the radial velocities was aided by a characterisation of the stellar activity using simultaneous photometric and spectroscopic diagnostics. Results. Despite the high quality of our HARPS-N data and the diversity of tests we performed, we were unable to detect the planet V830 Tau b in our data and cannot confirm its existence. Our simulations show that a statistically significant detection of the claimed planetary Doppler signal is very challenging. Conclusions. It is important to continue Doppler searches for planets around young stars, but utmost care must be taken in the attempt to overcome the technical difficulties to be faced in order to achieve their detection and characterisation. This point must be kept in mind when assessing their occurrence rate, formation mechanisms, and migration pathways, especially without evidence of their existence from photometric transits.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages