Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
  • 1
    Online Resource
    Online Resource
    Wiley ; 2019
    In:  Quarterly Journal of the Royal Meteorological Society Vol. 145, No. 722 ( 2019-07), p. 2085-2100
    In: Quarterly Journal of the Royal Meteorological Society, Wiley, Vol. 145, No. 722 ( 2019-07), p. 2085-2100
    Abstract: Understanding the root causes of forecast errors and occasional very poor forecasts is essential but difficult. In this paper we investigate the relative importance of initial conditions and model formulation for medium‐range errors in 500 hPa geopotential height. The question is addressed by comparing forecasts produced with ECMWF‐IFS and NCEP‐GFS forecasting systems, and with the GFDL‐fvGFS model initialized with the ECMWF and NCEP initial conditions. This gives two pairs of configurations that use the same initial conditions but different models, and one pair with the same model but different initial conditions. The first conclusion is that the initial conditions play the major role in differences between the configurations in terms of the average root‐mean‐square error for both Northern and Southern Hemispheres as well as Europe and the contiguous US (CONUS), while the model dominates the systematic errors. A similar conclusion is also found by verifying precipitation over low latitudes and the CONUS. The day‐to‐day variations of 500 hPa geopotential height scores are exemplified by one case of a forecast bust over Europe, where the error is found to be dominated by initial errors. The results are generalized by calculating correlations between errors integrated over Europe, CONUS and a region in the southeastern Pacific from the different configurations. For Europe and southeast Pacific, the correlations in the medium range are highest between the pairs that use the same initial conditions, while over CONUS they are highest for the pair with the same model. This suggests different mechanisms behind the day‐to‐day variability of the score for these regions. Over CONUS the link is made to the propagation of troughs over the Rockies, and the result suggests that the large differences in parametrizations of orographic drag between the models play a role.
    Type of Medium: Online Resource
    ISSN: 0035-9009 , 1477-870X
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 3142-2
    detail.hit.zdb_id: 2089168-4
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Monthly Weather Review, American Meteorological Society, Vol. 137, No. 8 ( 2009-08-01), p. 2471-2492
    Abstract: This study compares six different guidance products for targeted observations over the northwest Pacific Ocean for 84 cases of 2-day forecasts in 2006 and highlights the unique dynamical features affecting the tropical cyclone (TC) tracks in this basin. The six products include three types of guidance based on total-energy singular vectors (TESVs) from different global models, the ensemble transform Kalman filter (ETKF) based on a multimodel ensemble, the deep-layer mean (DLM) wind variance, and the adjoint-derived sensitivity steering vector (ADSSV). The similarities among the six products are evaluated using two objective statistical techniques to show the diversity of the sensitivity regions in large, synoptic-scale domains and in smaller domains local to the TC. It is shown that the three TESVs are relatively similar to one another in both the large and the small domains while the comparisons of the DLM wind variance with other methods show rather low similarities. The ETKF and the ADSSV usually show high similarity because their optimal sensitivity usually lies close to the TC. The ADSSV, relative to the ETKF, reveals more similar sensitivity patterns to those associated with TESVs. Three special cases are also selected to highlight the similarities and differences among the six guidance products and to interpret the dynamical systems affecting the TC motion in the northwestern Pacific. Among the three storms studied, Typhoon Chanchu was associated with the subtropical high, Typhoon Shanshan was associated with the midlatitude trough, and Typhoon Durian was associated with the subtropical jet. The adjoint methods are found to be more capable of capturing the signal of the dynamic system that may affect the TC movement or evolution than are the ensemble methods.
    Type of Medium: Online Resource
    ISSN: 1520-0493 , 0027-0644
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2009
    In:  Monthly Weather Review Vol. 137, No. 12 ( 2009-12-01), p. 4425-4432
    In: Monthly Weather Review, American Meteorological Society, Vol. 137, No. 12 ( 2009-12-01), p. 4425-4432
    Type of Medium: Online Resource
    ISSN: 1520-0493 , 0027-0644
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2022
    In:  Bulletin of the American Meteorological Society Vol. 103, No. 2 ( 2022-02), p. E463-E484
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 103, No. 2 ( 2022-02), p. E463-E484
    Abstract: A subseasonal-to-seasonal (S2S) prediction system was recently developed using the GFDL Seamless System for Prediction and Earth System Research (SPEAR) global coupled model. Based on 20-yr hindcast results (2000–19), the boreal wintertime (November–April) Madden–Julian oscillation (MJO) prediction skill is revealed to reach 30 days measured before the anomaly correlation coefficient of the real-time multivariate (RMM) index drops to 0.5. However, when the MJO is partitioned into four distinct propagation patterns, the prediction range extends to 38, 31, and 31 days for the fast-propagating, slow-propagating, and jumping MJO patterns, respectively, but falls to 23 days for the standing MJO. A further improvement of MJO prediction requires attention to the standing MJO given its large gap with its potential predictability (38 days). The slow-propagating MJO detours southward when traversing the Maritime Continent (MC), and confronts the MC prediction barrier in the model, while the fast-propagating MJO moves across the central MC without this prediction barrier. The MJO diversity is modulated by stratospheric quasi-biennial oscillation (QBO): the standing (slow-propagating) MJO coincides with significant westerly (easterly) phases of QBO, partially explaining the contrasting MJO prediction skill between these two QBO phases. The SPEAR model shows its capability, beyond the propagation, in predicting their initiation for different types of MJO along with discrete precursory convection anomalies. The SPEAR model skillfully predicts the observed distinct teleconnections over the North Pacific and North America related to the standing, jumping, and fast-propagating MJO, but not the slow-propagating MJO. These findings highlight the complexities and challenges of incorporating MJO prediction into the operational prediction of meteorological variables.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2011
    In:  Monthly Weather Review Vol. 139, No. 5 ( 2011-05), p. 1608-1625
    In: Monthly Weather Review, American Meteorological Society, Vol. 139, No. 5 ( 2011-05), p. 1608-1625
    Abstract: The adjoint-derived sensitivity steering vector (ADSSV) has been proposed and applied as a guidance for targeted observation in the field programs for improving tropical cyclone predictability, such as The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC). The ADSSV identifies sensitive areas at the observing time to the steering flow at the verifying time through adjoint calculation. In addition, the ability of the ADSSV to represent signals of influence from synoptic systems such as the midlatitude trough and the subtropical high prior to the recurvature of Typhoon Shanshan (2006) has also been demonstrated. In this study, the impact of initial perturbations associated with the high or low ADSSV sensitivity on model simulations is investigated by systematically perturbing initial vorticity fields in the case of Shanshan. Results show that experiments with the perturbed initial conditions located in the high ADSSV area (i.e., the midlatitude trough and the subtropical high) lead to more track deflection relative to the unperturbed control run than experiments with perturbations in the low sensitivity area. The evolutions of the deep-layer-mean steering flow and the direction of the ADSSV are compared to provide conceptual interpretation and validation on the physical meaning of the ADSSV. Concerning the results associated with the perturbed regions in high sensitivity regions, the variation of the steering flow within the verifying area due to the initial perturbations is generally consistent with that of the direction of the ADSSV. In addition, the bifurcation between the ADSSV and the steering change becomes larger with the increased integration time. However, the result for the perturbed region in the low-sensitivity region indicates that the steering change does not have good agreement with the ADSSV. The large initial perturbations to the low-sensitivity region may interact with the trough to the north due to the nonlinearity, which may not be accounted for in the ADSSV. Furthermore, the effect of perturbations specifically within the sensitive vertical layers is investigated to validate the vertical structure of the ADSSV. The structure of kinetic energy shows that the perturbation associated with the trough (subtropical high) specifically in the mid-to-upper (mid-to-lower) troposphere evolves similarly to that in the deep-layer troposphere, leading to comparable track changes. A sensitivity test in which perturbations are locally introduced in a higher-sensitivity area is conducted to examine the different impact as compared to that perturbed with the broader synoptic feature.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2011
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Monthly Weather Review Vol. 147, No. 9 ( 2019-09-01), p. 3409-3428
    In: Monthly Weather Review, American Meteorological Society, Vol. 147, No. 9 ( 2019-09-01), p. 3409-3428
    Abstract: A new global model using the GFDL nonhydrostatic Finite-Volume Cubed-Sphere Dynamical Core (FV3) coupled to physical parameterizations from the National Centers for Environmental Prediction’s Global Forecast System (NCEP/GFS) was built at GFDL, named fvGFS. The modern dynamical core, FV3, has been selected for the National Oceanic and Atmospheric Administration’s Next Generation Global Prediction System (NGGPS) due to its accuracy, adaptability, and computational efficiency, which brings a great opportunity for the unification of weather and climate prediction systems. The performance of tropical cyclone (TC) forecasts in the 13-km fvGFS is evaluated globally based on 363 daily cases of 10-day forecasts in 2015. Track and intensity errors of TCs in fvGFS are compared to those in the operational GFS. The fvGFS outperforms the GFS in TC intensity prediction for all basins. For TC track prediction, the fvGFS forecasts are substantially better over the northern Atlantic basin and the northern Pacific Ocean than the GFS forecasts. An updated version of the fvGFS with the GFDL 6-category cloud microphysics scheme is also investigated based on the same 363 cases. With this upgraded microphysics scheme, fvGFS shows much improvement in TC intensity prediction over the operational GFS. Besides track and intensity forecasts, the performance of TC genesis forecast is also compared between the fvGFS and operational GFS. In addition to evaluating the hit/false alarm ratios, a novel method is developed to investigate the lengths of TC genesis lead times in the forecasts. Both versions of fvGFS show higher hit ratios, lower false alarm ratios, and longer genesis lead times than those of the GFS model in most of the TC basins.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Monthly Weather Review, American Meteorological Society, Vol. 137, No. 3 ( 2009-03-01), p. 852-862
    Abstract: Targeted observation is one of the most important research and forecasting issues for improving tropical cyclone predictability. A new parameter [i.e., the adjoint-derived sensitivity steering vector (ADSSV)] has been proposed and adopted as one of the targeted observing strategies in the Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR). The ADSSV identifies the sensitive areas at the observing time to the steering flow at the verifying time through the adjoint calculation. In this study, the ADSSV is calculated from the nonlinear forecast model of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) and its adjoint to interpret the dynamical processes in the interaction between Typhoon Shanshan (2006) and the midlatitude trough. The ADSSV results imply that high-sensitivity regions affecting the motion of Typhoon Shanshan are located at the edge of the subtropical high and the 500-hPa midlatitude trough over northern central China. These ADSSV signals are in very good agreement with the quantitative evaluation based on the potential vorticity (PV) diagnosis. The vertical structure of the ADSSV is also shown for more physical insights into the typhoon–trough interaction. The maximum ADSSV occurs at 800–500 hPa to the southeast of Shanshan (associated with the subtropical high), while distinct ADSSV signals are located upstream of the storm center at about 500–300 hPa (associated with the mid- to upper-tropospheric midlatitude trough). Overall, it is demonstrated that the ADSSV features can well capture the signal of the large-scale trough feature affecting the motion of Shanshan, which can also be well validated from the PV analysis.
    Type of Medium: Online Resource
    ISSN: 1520-0493 , 0027-0644
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2019
    In:  Geophysical Research Letters Vol. 46, No. 8 ( 2019-04-28), p. 4495-4501
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 46, No. 8 ( 2019-04-28), p. 4495-4501
    Abstract: The GFDL fvGFS model shows superior hurricane track forecasts than the world‐leading ECMWF model when using ECMWF's initial condition The poor tropical cyclone intensity forecasts shown in both the operational GFS and the ECWMF model are significantly improved in the fvGFS
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2019
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Bulletin of the American Meteorological Society Vol. 100, No. 7 ( 2019-07), p. 1225-1243
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 100, No. 7 ( 2019-07), p. 1225-1243
    Abstract: The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a new variable-resolution global model with the ability to represent convective-scale features that serves as a prototype of the Next Generation Global Prediction System (NGGPS). The goal of this prediction system is to maintain the skill in large-scale features while simultaneously improving the prediction skill of convectively driven mesoscale phenomena. This paper demonstrates the new capability of this model in convective-scale prediction relative to the current operational Global Forecast System (GFS). This model uses the stretched-grid functionality of the Finite-Volume Cubed-Sphere Dynamical Core (FV3) to refine the global 13-km uniform-resolution model down to 4-km convection-permitting resolution over the contiguous United States (CONUS), and implements the GFDL single-moment 6-category cloud microphysics to improve the representation of moist processes. Statistics gathered from two years of simulations by the GFS and select configurations of the FV3-based model are carefully examined. The variable-resolution FV3-based model is shown to possess global forecast skill comparable with that of the operational GFS while quantitatively improving skill and better representing the diurnal cycle within the high-resolution area compared to the uniform mesh simulations. Forecasts of the occurrence of extreme precipitation rates over the southern Great Plains are also shown to improve with the variable-resolution model. Case studies are provided of a squall line and a hurricane to demonstrate the effectiveness of the variable-resolution model to simulate convective-scale phenomena.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), Vol. 12, No. 10 ( 2020-10)
    Abstract: A unified “one code, one executable, one workflow” global prediction modeling system is presented SHiELD's multiple configurations show prediction skill and simulation fidelity matching or exceeding those of existing U.S. models The FV3 Dynamical Core provides a powerful foundation for unified prediction modeling
    Type of Medium: Online Resource
    ISSN: 1942-2466 , 1942-2466
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2020
    detail.hit.zdb_id: 2462132-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages