Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
  • 1
    In: Alcohol: Clinical and Experimental Research, Wiley, Vol. 48, No. 1 ( 2024-01), p. 33-47
    Abstract: Alcohol use disorder (AUD) affects 283 million people worldwide and its prevalence is increasing. Despite the role of the cerebellum in executive control and its sensitivity to alcohol, few studies have assessed its involvement in AUD‐relevant functional networks. The goal of this study is to compare resting‐state functional connectivity (FC) patterns in abstinent adults with a history of AUD and controls (CTL). We hypothesized that group differences in cerebro‐cerebellar FC would be present, particularly within the frontoparietal/executive control network (FPN). Methods Twenty‐eight participants completed a resting‐state functional magnetic resonance imaging (rsfMRI) study. CTL participants had no history of AUD, comorbid psychological conditions, or recent heavy drinking and/or drug use. AUD participants had a history of AUD, with sobriety for at least 30 days prior to data collection. Multivariate pattern analysis, an agnostic, whole‐brain approach, was used to identify regions with significant differences in FC between groups. Seed‐based analyses were then conducted to determine the directionality and extent of these FC differences. Associations between FC strength and executive function were assessed using correlations with Wisconsin Card Sorting Test (WCST) performance. Results There were significant group differences in FC in nodes of the FPN, ventral attention network, and default mode network. Post hoc analyses predominantly identified FC differences within the cerebro‐cerebellar FPN, with AUD showing significantly less FC within the FPN. In AUD, FC strength between FPN clusters identified in the multivariate pattern analysis (MVPA) analysis (Left Crus II, Right Frontal Cortex) was positively associated with performance on the WCST. Conclusions Our results show less engagement of the FPN in individuals with AUD than in CTL. FC strength within this network was positively associated with performance on the WCST. These findings suggest that long‐term heavy drinking alters cerebro‐cerebellar FC, particularly within networks that are involved in executive function.
    Type of Medium: Online Resource
    ISSN: 2993-7175 , 2993-7175
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2024
    detail.hit.zdb_id: 3167872-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2008
    In:  Proceedings of the National Academy of Sciences Vol. 105, No. 23 ( 2008-06-10), p. 8108-8113
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 105, No. 23 ( 2008-06-10), p. 8108-8113
    Abstract: Classical conditioning paradigms, such as trace conditioning, in which a silent period elapses between the offset of the conditioned stimulus (CS) and the delivery of the unconditioned stimulus (US), and delay conditioning, in which the CS and US coterminate, are widely used to study the neural substrates of associative learning. However, there are significant gaps in our knowledge of the neural systems underlying conditioning in humans. For example, evidence from animal and human patient research suggests that the hippocampus plays a critical role during trace eyeblink conditioning, but there is no evidence to date in humans that the hippocampus is active during trace eyeblink conditioning or is differentially responsive to delay and trace paradigms. The present work provides a direct comparison of the neural correlates of human delay and trace eyeblink conditioning by using functional MRI. Behavioral results showed that humans can learn both delay and trace conditioning in parallel. Comparable delay and trace activation was measured in the cerebellum, whereas greater hippocampal activity was detected during trace compared with delay conditioning. These findings further support the position that the cerebellum is involved in both delay and trace eyeblink conditioning whereas the hippocampus is critical for trace eyeblink conditioning. These results also suggest that the neural circuitry supporting delay and trace eyeblink classical conditioning in humans and laboratory animals may be functionally similar.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2008
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cold Spring Harbor Laboratory ; 2007
    In:  Learning & Memory Vol. 14, No. 7 ( 2007-07), p. 485-490
    In: Learning & Memory, Cold Spring Harbor Laboratory, Vol. 14, No. 7 ( 2007-07), p. 485-490
    Abstract: Laboratory animal and human subject studies report that the amygdala is a critical brain structure that supports the acquisition and expression of conditional fear. Recent functional neuroimaging studies in humans have reported that activity in this region is closely related to the behavioral expression of conditional skin conductance responses (SCR). However, SCR waveforms following conditional stimulus (CS) presentation contain both early period and late period responses that may differ with respect to underlying central processes. It is not known whether amygdala activity corresponds to the expression of early conditonal responses (CRs) that occur shortly following CS onset or late CRs that closely precede UCS onset. The present study used event-related functional magnetic resonance imaging and concurrent skin conductance measurements to determine whether amygdala activity is more closely related to the expression of early or late period CRs. Increased amygdala activity was detected during the formation of early, but not late period CRs. Additionally, this pattern of amygdala activity did not dissipate, but persisted into late stages of the experiment. These findings are consistent with the idea that amygdala responding is critically involved in the generation of CRs formed shortly following CS onset.
    Type of Medium: Online Resource
    ISSN: 1072-0502 , 1549-5485
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2007
    detail.hit.zdb_id: 2022057-1
    detail.hit.zdb_id: 1204777-6
    SSG: 12
    SSG: 5,2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cold Spring Harbor Laboratory ; 2020
    In:  Learning & Memory Vol. 27, No. 2 ( 2020-02), p. 78-82
    In: Learning & Memory, Cold Spring Harbor Laboratory, Vol. 27, No. 2 ( 2020-02), p. 78-82
    Abstract: The role of awareness in differential delay eyeblink conditioning (EBC) has been a topic of much debate. We tested the idea that awareness is required for differential delay EBC when two cues are perceptually similar. The present study manipulated frequencies of auditory conditioned stimuli (CS) to vary CS similarity in three groups of participants. Our findings indicate that awareness was not necessary for differential delay EBC when two tones are easily discriminable, awareness was also not needed for relatively similar tones but may facilitate earlier conditioning, and awareness alone was not sufficient for differential delay EBC.
    Type of Medium: Online Resource
    ISSN: 1549-5485
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2020
    detail.hit.zdb_id: 2022057-1
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Alcoholism: Clinical and Experimental Research, Wiley, Vol. 44, No. 5 ( 2020-05), p. 1099-1111
    Abstract: Functional MRI (fMRI) task‐related analyses rely on an estimate of the brain's hemodynamic response function (HRF) to model the brain's response to events. Although changes in the HRF have been found after acute alcohol administration, the effects of heavy chronic alcohol consumption on the HRF have not been explored, and the potential benefits or pitfalls of estimating each individual's HRF on fMRI analyses of chronic alcohol use disorder (AUD) are not known. Methods Participants with AUD and controls (CTL) received structural, functional, and vascular scans. During fMRI, participants were cued to tap their fingers, and averaged responses were extracted from the motor cortex. Curve fitting on these HRFs modeled them as a difference between 2 gamma distributions, and the temporal occurrence of the main peak and undershoot of the HRF was computed from the mean of the first and second gamma distributions, respectively. Results ANOVA and regression analyses found that the timing of the HRF undershoot increased significantly as a function of total lifetime drinking. Although gray matter volume in the motor cortex decreased with lifetime drinking, this was not sufficient to explain undershoot timing shifts, and vascular factors measured in the motor cortex did not differ among groups. Comparison of random‐effects analyses using custom‐fitted and canonical HRFs for CTL and AUD groups showed better results throughout the brain for custom‐fitted versus canonical HRFs for CTL subjects. For AUD subjects, the same was true except for the basal ganglia. Conclusions These findings suggest that excessive alcohol consumption is associated with changes in the HRF undershoot. HRF changes could provide a possible biomarker for the effects of lifetime drinking on brain function. Changes in HRF topography affect fMRI activation measures, and subject‐specific HRFs generally improve fMRI activation results.
    Type of Medium: Online Resource
    ISSN: 0145-6008 , 1530-0277
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2046886-6
    detail.hit.zdb_id: 428999-7
    SSG: 15,3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Society for Neuroscience ; 2004
    In:  The Journal of Neuroscience Vol. 24, No. 1 ( 2004-01-07), p. 218-228
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 24, No. 1 ( 2004-01-07), p. 218-228
    Abstract: Previous functional magnetic resonance imaging (fMRI) studies with human subjects have explored the neural substrates involved in forming associations in Pavlovian fear conditioning. Most of these studies used delay procedures, in which the conditioned stimulus (CS) and unconditioned stimulus (UCS) coterminate. Less is known about brain regions that support trace conditioning, a procedure in which an interval of time (trace interval) elapses between CS termination and UCS onset. Previous work suggests significant overlap in the neural circuitry supporting delay and trace fear conditioning, although trace conditioning requires recruitment of additional brain regions. In the present event-related fMRI study, skin conductance and continuous measures of UCS expectancy were recorded concurrently with whole-brain blood oxygenation level-dependent (BOLD) imaging during direct comparison of delay and trace discrimination learning. Significant activation was observed within the visual cortex for all CSs. Anterior cingulate and medial thalamic activity reflected associative learning common to both delay and trace procedures. Activations within the supplementary motor area (SMA), frontal operculum, middle frontal gyri, and inferior parietal lobule were specifically associated with trace interval processing. The hippocampus displayed BOLD signal increases early in training during all conditions; however, differences were observed in hippocampal response magnitude related to the accuracy of predicting UCS presentations. These results demonstrate overlapping patterns of activation within the anterior cingulate, medial thalamus, and visual cortex during delay and trace procedures, with additional recruitment of the hippocampus, SMA, frontal operculum, middle frontal gyrus, and inferior parietal lobule during trace conditioning. These data suggest that the hippocampus codes temporal information during trace conditioning, whereas brain regions supporting working memory processes maintain the CS-UCS representation during the trace interval.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2004
    detail.hit.zdb_id: 1475274-8
    detail.hit.zdb_id: 604637-X
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: The American Journal of Pathology, Elsevier BV, Vol. 172, No. 5 ( 2008-05), p. 1381-1390
    Type of Medium: Online Resource
    ISSN: 0002-9440
    RVK:
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2008
    detail.hit.zdb_id: 2943-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Psychological Association (APA) ; 2003
    In:  Behavioral Neuroscience Vol. 117, No. 1 ( 2003), p. 3-10
    In: Behavioral Neuroscience, American Psychological Association (APA), Vol. 117, No. 1 ( 2003), p. 3-10
    Type of Medium: Online Resource
    ISSN: 1939-0084 , 0735-7044
    Language: English
    Publisher: American Psychological Association (APA)
    Publication Date: 2003
    detail.hit.zdb_id: 230159-3
    detail.hit.zdb_id: 2068498-8
    SSG: 5,2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 742-742
    Abstract: Chimeric antigen receptor T cells targeting CD30 (CD30.CAR-T) have shown high response rates, including some durable remissions, in patients with relapsed/refractory (r/r) classical Hodgkin lymphoma (HL) (Ramos et al., JCO 2020). However, some patients are non-responders or eventually relapse after therapy. Because CD30 expression is retained in relapsing tumors, recurrence may be due to the insufficient persistence of CAR-Ts within the highly immunosuppressive tumor microenvironment of HL. We therefore reasoned that with enhanced trafficking to the tumor site, CD30.CAR-Ts would have increased opportunities to eliminate tumors before inhibitory mechanisms become predominant. This is especially relevant for HL, where Hodgkin Reed Sternberg (HRS) cells produce CCL17 (thymus and activation-regulated chemokine) to create a physical and inhibitory barrier to cytotoxic T cells. We have previously shown that CD30.CAR-Ts co-expressing the cognate receptor for CCL17, CCR4 (CCR4.CD30.CAR-Ts), have improved tumor homing and anti-lymphoma activity compared with CD30.CAR-Ts that do not express CCR4 (Di Stasi et al., Blood 2009). CCR4.CD30.CAR-Ts should also be more effective in CD30+ cutaneous T-cell lymphomas (CTCL) due to enhanced trafficking to the skin. We present the preliminary results of a clinical trial assessing the safety (primary objective) of this novel strategy and its efficacy compared to CD30.CAR-Ts lacking CCR4 in patients with r/r HL and CD30+ CTCL (NCT03602157). CCR4.CD30.CAR-Ts are infused in patients in a dose escalation fashion (DL1=2x10 7 CAR-Ts/m 2, DL3=5x10 7 CAR-Ts/m 2, DL5=1x10 8 CAR-Ts/m 2,). To provide definitive conclusions on the role of CAR-T tumor homing, after completion of each dose level, patients receive the dose of CCR4.CD30.CAR-Ts established to be safe in the prior DL, combined with a fixed dose of CD30.CAR-Ts (1x10 8 CAR-Ts/m 2) (DL2, DL4, DL6). All patients receive lymphodepletion with 3 days of bendamustine 70 mg/m 2 and fludarabine 30 mg/m 2. Key inclusion criteria are age ≥ 18 years and r/r HL or CTCL having failed ≥2 prior therapies. At the time of data cut off (8/1/2021), 6 patients were treated on DL1, 3 patients on DL2, and 3 patients on DL3. The median age is 43.5 (range 27-75) with a median of 5.5 prior lines of therapy (range 2-10). Ten patients had HL and 2 patients had CTCL. All patients had received prior brentuximab vedotin. Eleven patients received prior checkpoint inhibitors, 9 had prior autologous stem cell transplant, and 5 had prior allogeneic stem cell transplant. The treatment was well tolerated with no dose limiting toxicities observed. Two patients had grade 2 cytokine release syndrome (CRS) which resolved with tocilizumab, and 1 had self-limiting grade 1 CRS. None of the treated patients developed immune effector cell-associated neurotoxicity syndrome. All of the 8 patients with HL who have had disease assessment have responded with 6 complete responses (CR) (75%) and 2 partial responses (PR). Five patients are in remission to date, with one patient still in CR at 2.5 years post treatment. Two patients with HL have responses pending at time of data cut off. Among the 2 patients with CTCL, 1 patient had stable disease and went on to receive alternative therapy and 1 patient had progressive disease. At a median follow up of 12.7 months, the median progression free survival (PFS) for all 10 evaluable patients is 5.2 months and the median PFS for HL patients has not been reached. The median overall survival for all patients has not been reached. Plasma CCL17, a biomarker of disease response for HL, was reduced by 83±15% by week 2 post infusion in patients treated with CCR4.CD30.CAR-Ts as compared to 52±38% in patients on our previous trial that had received CD30.CAR-Ts lacking CCR4 (p=0.02). In a HL patient on DL1 biopsied 3 weeks post infusion, we found markedly enriched CAR-T signals at the tumor site (14.4 x10 5 copies/ug of DNA) as compared to the signals found at the same time point in the peripheral blood (4.3 x10 5 copies/ug of DNA). Our data confirm the safety of CCR4.CD30.CAR-Ts as well as their promising efficacy in patients with r/r HL. Interestingly, responses are already seen at the lowest dose level, suggesting that early tumor homing driven by CCR4 may allow more fitted cells to better exploit their antitumor potential. Our data serve as a proof of concept for future modifications of CAR-T cells to improve their localization to disease sites. Figure 1 Figure 1. Disclosures Grover: Kite: Other: Advisory Board; Tessa: Consultancy; ADC: Other: Advisory Board; Novartis: Consultancy; Genentech: Research Funding. Morrison: Vesselon: Consultancy. Dittus: BeiGene: Other: Advisory Board; Seattle Genetics: Research Funding; AstraZeneca: Research Funding; Genentech: Research Funding. Dotti: Tessa: Patents & Royalties: Approach for CD30.CAR-T Cells for Hodgkin Lymphoma. Serody: Tessa: Patents & Royalties: Approach for CD30.CAR-T Cells for Hodgkin Lymphoma. Savoldo: Tessa: Patents & Royalties: Approach for CD30.CAR-T Cells for Hodgkin Lymphoma.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Brain Structure and Function Vol. 226, No. 3 ( 2021-04), p. 833-844
    In: Brain Structure and Function, Springer Science and Business Media LLC, Vol. 226, No. 3 ( 2021-04), p. 833-844
    Abstract: Several fMRI studies have shown that the superior cerebellum exhibits load-dependent activations during encoding of letters in a Sternberg verbal working memory (VWM) task. It has been hypothesized that the cerebellum regulates the acquisition of sensory data across all modalities, and thus, that VWM load activations may reflect high- vs low-load differences in sensory acquisition demands. Therefore, increased difficulty in sensory data acquisition should elicit greater activation in the cerebellum. The present fMRI study manipulated sensory acquisition in VWM by presenting visually degraded and non-degraded stimuli with high and low memory loads, thereby identifying load-dependent regions of interest in the cerebellum, and then testing if these regions showed greater activation for degraded stimuli. Results yielded partial support for the sensory acquisition hypothesis in a load-dependent region of the vermis, which showed significantly greater activation for degraded relative to non-degraded stimuli. Because eye movements did not differ for these stimulus types, and degradation-related activations were present after co-varying eye movements, this activation appears to be related to perceptual rather than oculomotor demands. In contrast to the vermis, load-sensitive regions of the cerebellar hemispheres did not show increased activation for degraded stimuli. These findings point to an overall function of association-based prediction that may underlie general cerebellar function, with perceptual prediction of stimuli from partial representations occurring in the vermis, and articulatory prediction occurring in the hemispheres.
    Type of Medium: Online Resource
    ISSN: 1863-2653 , 1863-2661
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2273162-3
    detail.hit.zdb_id: 2303775-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages