In:
Microbiology Spectrum, American Society for Microbiology, Vol. 9, No. 3 ( 2021-12-22)
Abstract:
Cerebrospinal fluid (CSF) circulating in the human central nervous system has long been considered aseptic in healthy individuals, because normally, the blood-brain barrier can protect against microbial invasions. However, this dogma has been called into question by several reports that microbes were identified in human brains, raising the question of whether there is a microbial community in the CSF of healthy individuals without neurological diseases. Here, we collected CSF samples and other samples, including one-to-one matched oral and skin swab samples (positive controls), from 23 pregnant women aged between 23 and 40 years. Normal saline samples (negative controls), sterile swabs, and extraction buffer samples (contamination controls) were also collected. Twelve of the CSF specimens were also used to evaluate the physiological activities of detected microbes. Metagenomic and metatranscriptomic sequencing was performed in these 116 specimens. A total of 620 nonredundant microbes were detected, which were dominated by bacteria (74.6%) and viruses (24.2%), while in CSF samples, metagenomic sequencing found only 26 nonredundant microbes, including one eukaryote, four bacteria, and 21 viruses (mostly bacteriophages). The beta diversity of microbes compared between CSF metagenomic samples and other types of samples (except negative controls) was significantly different from that of the CSF self-comparison. In addition, there was no active or viable microbe in the matched metagenomic and metatranscriptomic sequencing of CSF specimens after subtracting those also found in normal saline, DNA extraction buffer, and skin swab specimens. In conclusion, our results showed no strong evidence of a colonized microbial community present in the CSF of healthy individuals. IMPORTANCE The microbiome is prevalent throughout human bodies, with profound health implications. However, it remains unclear whether it is present and active in human CSF, which has been long considered aseptic due to the blood-brain barrier. Here, we applied unbiased metagenomic and metatranscriptomic sequencing to detect the presence of a microbiome in CSF collected from 23 pregnant women with matched controls. Analysis of 116 specimens found no strong evidence to support the presence of a colonized microbiome in CSF. Our findings will strengthen our understanding of the internal environment of the CSF in healthy people, which has strong implications for human health, especially for neurological infections and disorders, and will help further disease diagnostics, prevention, and therapeutics in clinical settings.
Type of Medium:
Online Resource
ISSN:
2165-0497
DOI:
10.1128/Spectrum.00769-21
Language:
English
Publisher:
American Society for Microbiology
Publication Date:
2021
detail.hit.zdb_id:
2807133-5
Bookmarklink