Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2022
    In:  Bulletin of the American Meteorological Society Vol. 103, No. 8 ( 2022-08), p. S11-S142
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 103, No. 8 ( 2022-08), p. S11-S142
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Bulletin of the American Meteorological Society Vol. 104, No. 9 ( 2023-09), p. S1-S10
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 104, No. 9 ( 2023-09), p. S1-S10
    Abstract: —J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases. In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022. Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record. While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia. The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations. In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old. In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February. Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded. A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported. As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items. In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities. On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Bulletin of the American Meteorological Society Vol. 104, No. 9 ( 2023-09), p. S11-S145
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 104, No. 9 ( 2023-09), p. S11-S145
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Optica Publishing Group ; 2008
    In:  Applied Optics Vol. 47, No. 26 ( 2008-09-10), p. 4749-
    In: Applied Optics, Optica Publishing Group, Vol. 47, No. 26 ( 2008-09-10), p. 4749-
    Type of Medium: Online Resource
    ISSN: 0003-6935 , 1539-4522
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2008
    detail.hit.zdb_id: 207387-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 11, No. 3 ( 2018-03-09), p. 1385-1402
    Abstract: Abstract. The GOME-type Total Ozone Essential Climate Variable (GTO-ECV) is a level-3 data record, which combines individual sensor products into one single cohesive record covering the 22-year period from 1995 to 2016, generated in the frame of the European Space Agency's Climate Change Initiative Phase II. It is based on level-2 total ozone data produced by the GODFIT (GOME-type Direct FITting) v4 algorithm as applied to the GOME/ERS-2, OMI/Aura, SCIAMACHY/Envisat and GOME-2/Metop-A and Metop-B observations. In this paper we examine whether GTO-ECV meets the specific requirements set by the international climate–chemistry modelling community for decadal stability long-term and short-term accuracy. In the following, we present the validation of the 2017 release of the Climate Research Data Package Total Ozone Column (CRDP TOC) at both level 2 and level 3. The inter-sensor consistency of the individual level-2 data sets has mean differences generally within 0.5 % at moderate latitudes (±50°), whereas the level-3 data sets show mean differences with respect to the OMI reference data record that span between −0.2 ± 0.9 % (for GOME-2B) and 1.0 ± 1.4 % (for SCIAMACHY). Very similar findings are reported for the level-2 validation against independent ground-based TOC observations reported by Brewer, Dobson and SAOZ instruments: the mean bias between GODFIT v4 satellite TOC and the ground instrument is well within 1.0 ± 1.0 % for all sensors, the drift per decade spans between −0.5 % and 1.0 ± 1.0 % depending on the sensor, and the peak-to-peak seasonality of the differences ranges from ∼ 1 % for GOME and OMI to  ∼ 2 % for SCIAMACHY. For the level-3 validation, our first goal was to show that the level-3 CRDP produces findings consistent with the level-2 individual sensor comparisons. We show a very good agreement with 0.5 to 2 % peak-to-peak amplitude for the monthly mean difference time series and a negligible drift per decade of the differences in the Northern Hemisphere of −0.11 ± 0.10 % decade−1 for Dobson and +0.22 ± 0.08 % decade−1 for Brewer collocations. The exceptional quality of the level-3 GTO-ECV v3 TOC record temporal stability satisfies well the requirements for the total ozone measurement decadal stability of 1–3 % and the short-term and long-term accuracy requirements of 2 and 3 %, respectively, showing a remarkable inter-sensor consistency, both in the level-2 GODFIT v4 and in the level-3 GTO-ECV v3 datasets, and thus can be used for longer-term analysis of the ozone layer, such as decadal trend studies, chemistry–climate model evaluation and data assimilation applications.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2505596-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Copernicus GmbH ; 2018
    In:  Atmospheric Measurement Techniques Vol. 11, No. 9 ( 2018-09-18), p. 5237-5259
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 11, No. 9 ( 2018-09-18), p. 5237-5259
    Abstract: Abstract. The Global Ozone Monitoring Experiment (GOME) on-board the second European Remote Sensing satellite provided measurements of atmospheric constituents such as ozone and other trace gases for the 16-year period from 1995 to 2011. In this paper we present a detailed analysis of the long-term performance of the sensor and introduce the new homogenised and fully calibrated level 1 product that has been generated using the recently developed GOME Data Processor level-0-to-1b (GDP-L1) Version 5.1. By means of the various in-flight calibration parameters, we monitor the behaviour and stability of the instrument during the entire mission. Severe degradation of the optical components has led to a significant decrease in intensity, in particular in channels 1 and 2, which cover the spectral ranges of 240–316 and 311–405 nm, respectively. Thus, a soft correction based on using the Sun as a stable calibration source is applied. Revision and optimisation of other calibration algorithms such as the wavelength assignment, polarisation correction, and dark current correction resulted in an improved and homogeneous level 1 product that can be regarded as the European satellite reference data for successor atmospheric composition sensors and that provides an excellent prerequisite for further exploitation of GOME measurements.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2505596-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Copernicus GmbH ; 2021
    In:  Atmospheric Chemistry and Physics Vol. 21, No. 2 ( 2021-01-18), p. 617-633
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 2 ( 2021-01-18), p. 617-633
    Abstract: Abstract. Ozone data derived from the Tropospheric Monitoring Instrument (TROPOMI) sensor on board the Sentinel-5 Precursor satellite show exceptionally low total ozone columns in the polar region of the Northern Hemisphere (Arctic) in spring 2020. Minimum total ozone column values around or below 220 Dobson units (DU) were seen over the Arctic for 5 weeks in March and early April 2020. Usually the persistence of such low total ozone column values in spring is only observed in the polar Southern Hemisphere (Antarctic) and not over the Arctic. These record low total ozone columns were caused by a particularly strong polar vortex in the stratosphere with a persistent cold stratosphere at higher latitudes, a prerequisite for ozone depletion through heterogeneous chemistry. Based on the ERA5, which is the fifth generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis, the Northern Hemisphere winter 2019/2020 (from December to March) showed minimum polar cap temperatures consistently below 195 K around 20 km altitude, which enabled enhanced formation of polar stratospheric clouds. The special situation in spring 2020 is compared and discussed in context with two other Northern Hemisphere spring seasons, namely those in 1997 and 2011, which also displayed relatively low total ozone column values. However, during these years, total ozone columns below 220 DU over several consecutive days were not observed in spring. The similarities and differences of the atmospheric conditions of these three events and possible explanations for the observed features are presented and discussed. It becomes apparent that the monthly mean of the minimum total ozone column value for March 2020 (221 DU) was clearly below the respective values found in March 1997 (267 DU) and 2011 (252 DU), which highlights the special evolution of the polar stratospheric ozone layer in the Northern Hemisphere in spring 2020. A comparison with a typical ozone hole over the Antarctic (e.g., in 2016) indicates that although the Arctic spring 2020 situation is remarkable, with total ozone column values around or below 220 DU observed over a considerable area (up to 0.9 million km2), the Antarctic ozone hole shows total ozone columns typically below 150 DU over a much larger area (of the order of 20 million km2). Furthermore, total ozone columns below 220 DU are typically observed over the Antarctic for about 4 months.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 18, No. 3 ( 2018-02-14), p. 2097-2117
    Abstract: Abstract. We report on updated trends using different merged datasets from satellite and ground-based observations for the period from 1979 to 2016. Trends were determined by applying a multiple linear regression (MLR) to annual mean zonal mean data. Merged datasets used here include NASA MOD v8.6 and National Oceanic and Atmospheric Administration (NOAA) merge v8.6, both based on data from the series of Solar Backscatter UltraViolet (SBUV) and SBUV-2 satellite instruments (1978–present) as well as the Global Ozone Monitoring Experiment (GOME)-type Total Ozone (GTO) and GOME-SCIAMACHY-GOME-2 (GSG) merged datasets (1995–present), mainly comprising satellite data from GOME, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and GOME-2A. The fifth dataset consists of the monthly mean zonal mean data from ground-based measurements collected at World Ozone and UV Data Center (WOUDC). The addition of four more years of data since the last World Meteorological Organization (WMO) ozone assessment (2013–2016) shows that for most datasets and regions the trends since the stratospheric halogen reached its maximum (∼ 1996 globally and ∼ 2000 in polar regions) are mostly not significantly different from zero. However, for some latitudes, in particular the Southern Hemisphere extratropics and Northern Hemisphere subtropics, several datasets show small positive trends of slightly below +1 % decade−1 that are barely statistically significant at the 2σ uncertainty level. In the tropics, only two datasets show significant trends of +0.5 to +0.8 % decade−1, while the others show near-zero trends. Positive trends since 2000 have been observed over Antarctica in September, but near-zero trends are found in October as well as in March over the Arctic. Uncertainties due to possible drifts between the datasets, from the merging procedure used to combine satellite datasets and related to the low sampling of ground-based data, are not accounted for in the trend analysis. Consequently, the retrieved trends can be only considered to be at the brink of becoming significant, but there are indications that we are about to emerge into the expected recovery phase. However, the recent trends are still considerably masked by the observed large year-to-year dynamical variability in total ozone.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2014
    In:  Geophysical Research Letters Vol. 41, No. 12 ( 2014-06-28), p. 4363-4372
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 41, No. 12 ( 2014-06-28), p. 4363-4372
    Abstract: Global assessment of ozone trends using 18 years of European satellite data Natural variability masks ozone recovery in middle latitudes Additional 5–10 years of observations are required to detect expected onset
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2014
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 12, No. 2 ( 2019-02-14), p. 987-1011
    Abstract: Abstract. In this work we present evidence that quasi-cyclical perturbations in total ozone (quasi-biennial oscillation – QBO, El Niño–Southern Oscillation – ENSO, and North Atlantic Oscillation – NAO) can be used as independent proxies in evaluating Global Ozone Monitoring Experiment (GOME) 2 aboard MetOp A (GOME-2A) satellite total ozone data, using ground-based (GB) measurements, other satellite data, and chemical transport model calculations. The analysis is performed in the frame of the validation strategy on longer time scales within the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Atmospheric Composition Monitoring (AC SAF) project, covering the period 2007–2016. Comparison of GOME-2A total ozone with ground observations shows mean differences of about -0.7±1.4 % in the tropics (0–30∘), about +0.1±2.1 % in the mid-latitudes (30–60∘), and about +2.5±3.2 % and 0.0±4.3 % over the northern and southern high latitudes (60–80∘), respectively. In general, we find that GOME-2A total ozone data depict the QBO–ENSO–NAO natural fluctuations in concurrence with the co-located solar backscatter ultraviolet radiometer (SBUV), GOME-type Total Ozone Essential Climate Variable (GTO-ECV; composed of total ozone observations from GOME, SCIAMACHY – SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY, GOME-2A, and OMI – ozone monitoring instrument, combined into one homogeneous time series), and ground-based observations. Total ozone from GOME-2A is well correlated with the QBO (highest correlation in the tropics of +0.8) in agreement with SBUV, GTO-ECV, and GB data which also give the highest correlation in the tropics. The differences between deseazonalized GOME-2A and GB total ozone in the tropics are within ±1 %. These differences were tested further as to their correlations with the QBO. The differences had practically no QBO signal, providing an independent test of the stability of the long-term variability of the satellite data. Correlations between GOME-2A total ozone and the Southern Oscillation Index (SOI) were studied over the tropical Pacific Ocean after removing seasonal, QBO, and solar-cycle-related variability. Correlations between ozone and the SOI are on the order of +0.5, consistent with SBUV and GB observations. Differences between GOME-2A and GB measurements at the station of Samoa (American Samoa; 14.25∘ S, 170.6∘ W) are within ±1.9 %. We also studied the impact of the NAO on total ozone in the northern mid-latitudes in winter. We find very good agreement between GOME-2A and GB observations over Canada and Europe as to their NAO-related variability, with mean differences reaching the ±1 % levels. The agreement and small differences which were found between the independently produced total ozone datasets as to the influence of the QBO, ENSO, and NAO show the importance of these climatological proxies as additional tool for monitoring the long-term stability of satellite–ground-truth biases.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2505596-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages