Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cellular Oncology, Springer Science and Business Media LLC, Vol. 45, No. 3 ( 2022-06), p. 399-413
    Abstract: Synovial sarcoma (SySa) is a rare soft tissue tumor characterized by a reciprocal t(X;18) translocation. The chimeric SS18-SSX fusion protein represents the major driver of the disease, acting as aberrant transcriptional dysregulator. Oncogenic mechanisms whereby SS18-SSX mediates sarcomagenesis are incompletely understood, and strategies to selectively target SySa cells remain elusive. Based on results of Phospho-Kinase screening arrays, we here investigate the functional and therapeutic relevance of the transcription factor CREB in SySa tumorigenesis. Methods Immunohistochemistry of phosphorylated CREB and its downstream targets (Rb, Cyclin D1, PCNA, Bcl-xL and Bcl-2) was performed in a large cohort of SySa. Functional aspects of CREB activity, including SS18-SSX driven circuits involved in CREB activation, were analyzed in vitro employing five SySa cell lines and a mesenchymal stem cell model. CREB mediated transcriptional activity was modulated by RNAi-mediated knockdown and small molecule inhibitors (666-15, KG-501, NASTRp and Ro 31-8220). Anti-proliferative effects of the CREB inhibitor 666-15 were tested in SySa avian chorioallantoic membrane and murine xenograft models in vivo. Results We show that CREB is phosphorylated and activated in SySa, accompanied by downstream target expression. Human mesenchymal stem cells engineered to express SS18-SSX promote CREB expression and phosphorylation. Conversely, RNAi-mediated knockdown of SS18-SSX impairs CREB phosphorylation in SySa cells. Inhibition of CREB activity reduces downstream target expression, accompanied by suppression of SySa cell proliferation and induction of apoptosis in vitro and in vivo . Conclusion In conclusion, our data underline an essential role of CREB in SySa tumorigenesis and provides evidence for molecular targeted therapies.
    Type of Medium: Online Resource
    ISSN: 2211-3428 , 2211-3436
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2595105-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 22_Supplement ( 2017-11-15), p. B05-B05
    Abstract: Introduction: Myxoid liposarcoma (MLS) is the second most common type of liposarcoma, accounting for 30-35% of all LS cases. Over 90% of tumors are characterized by a reciprocal translocation t (12; 16) (q13; p11), resulting in a pathogenic gene fusion. The chimeric FUS-DDIT3 fusion protein is suggested to play a crucial role in MLS tumorigenesis and progression, although the specific biological function and the mechanism of action remain to be defined. We compiled a comprehensive cohort of 105 well-characterized MLS tissue specimens to identify actionable genetic aberrations. Methods: Targeted next-generation sequencing (NGS) using the Illumina MiSeq platform was performed to examine the mutational status of 23 cancer-related genes (covering all exons) known to be frequently mutated across various neoplasms. Furthermore, we examined the amplification/deletion status and characterized the specific chromosomal FUS-DDIT3 rearrangements by FISH and RT-PCR. A multivariate analysis was conducted to investigate the prognostic significance of mutation/amplification/deletion status. Results: Targeted next-generation sequencing drives the potential to generate comprehensive genetic information including less frequent mutated genes relevant for actionable treatments and prognostic assessment. Besides PIK3CA, six additional genes showed at least five mutations, including AKT1, CTNNB1, EGFR, ERBB2, MET and PTEN. Several oncogenic mutations were detected which have not been reported in MLS previously. We demonstrated several gene amplification/deletion events in MLS. Conclusion: Our results indicate the occurrence of mutational aberrations besides the chromosomal FUS-DDIT3 hallmark. These appear not to be related to specific subtypes of FUS-DDIT3 fusion transcripts in terms of a molecular pattern. Molecular screening for actionable mutations might represent a rational tool for the implementation of innovative targeted therapeutic approaches in MLS. To our best knowledge, this study is the most extensive one to yield a detailed map of actionable genetic aberrations across a comprehensive cohort of & gt;100 well-characterized MLS tissue specimens. Moreover, it reveals several molecular alteration-specific targets for innovative therapy strategies. Citation Format: Marcel Trautmann, Arne Krüger, Birte Jeiler, Christian Bertling, Jasmin Menzel, Magdalene Cyra, Konrad Steinestel, Inga Grünewald, Pierre Åman, Eva Wardelmann, Sebastian Huss, Wolfgang Hartmann. Myxoid liposarcoma: A molecular and clinicopathological analysis by targeted next-generation sequencing and fluorescence in situ hybridization [abstract]. In: Proceedings of the AACR International Conference: New Frontiers in Cancer Research; 2017 Jan 18-22; Cape Town, South Africa. Philadelphia (PA): AACR; Cancer Res 2017;77(22 Suppl):Abstract nr B05.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 3437-3437
    Abstract: Myxoid liposarcomas (MLS) account for 20% of malignant adipocytic tumors and are characterized by a high rate of local recurrence and development of distant metastases in approximately 40% of patients. Most MLS are driven by the FUS-DDIT3 fusion gene encoding an aberrant transcription factor. The mechanisms whereby FUS-DDIT3 mediates sarcomagenesis are incompletely understood, and strategies to selectively target MLS cells remain elusive. In this study, we employed genome-scale RNA interference (RNAi) screening to uncover that human mesenchymal stem cells engineered to express FUS-DDIT3 and MLS cell lines are dependent on YAP1, a transcriptional co-activator and central effector of the Hippo pathway involved in tissue growth and tumorigenesis. Analysis of a large cohort of primary MLS specimens (n=223) revealed that nuclear YAP1 expression was significantly more prevalent in MLS compared to other liposarcoma subtypes. In support of the concept that increased YAP1-mediated transcriptional activity represents an essential feature of MLS development, RNAi-based YAP1 depletion in cultured MLS cells resulted in suppression of cell viability, cell cycle arrest, cellular senescence, and induction of apoptosis accompanied by decreased YAP1 target gene expression, and YAP1-positive primary MLS tumors showed strong expression of YAP1 downstream effectors such as FOXM1 and PLK1. Mechanistically, FUS-DDIT3 promotes YAP1 transcription, nuclear localization, and transcriptional activity and physically associates with YAP1 in the nucleus of MLS cells, pointing to the coordinate establishment of gene expression programs that promote MLS tumorigenesis. Consistent with the hypothesis that a YAP1-directed therapeutic approach could represent a rational strategy to selectively target FUS-DDIT3-expressing MLS cells, pharmacologic inhibition of YAP1 activity with verteporfin suppressed cell viability and YAP1 target gene expression in MLS cell lines, and the growth-inhibitory effects of YAP1 knockdown or verteporfin treatment could be recapitulated in MLS cell line-based xenograft models. Collectively, our data identify dependence on aberrant YAP1 activity as specific liability of FUS-DDIT3-expressing MLS cells, and provide preclinical evidence that YAP1-mediated signal transduction represents a candidate target for therapeutic intervention that warrants further investigation. Citation Format: Marcel Trautmann, Ya-Yun Cheng, Patrizia Jensen, Ninel Azoitei, Ines Brunner, Jennifer Hüllein, Mikolaj Slabicki, Ilka Isfort, Magdalene Cyra, Eva Wardelmann, Sebastian Huss, Bianca Altvater, Claudia Rossig, Susanne Hafner, Thomas Simmet, Anders Ståhlberg, Pierre Åman, Thorsten Zenz, Undine Lange, Thomas Kindler, Claudia Scholl, Wolfgang Hartmann, Stefan Fröhling. Requirement for YAP1 signaling in myxoid liposarcoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 3437.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 3939-3939
    Abstract: Introduction: Myxoid liposarcoma (MLS) is the second most common type of liposarcoma and characterized by a high tendency to develop metastases. The molecular hallmark of MLS (≈90%) is a pathognomonic reciprocal t(12;16) (q13;p11) translocation, leading to the specific gene fusion of FUS and DDIT3. The resulting chimeric FUS-DDIT3 fusion protein is suggested to play a crucial role in MLS tumorigenesis, although its specific biological function and mechanism of action remain to be substantiated. While radiotherapy and chemotherapy with high-dose ifosfamide and doxorubicin represent established therapeutic options, prognosis in the metastasized situation is poor. Molecularly targeted therapeutic approaches are currently not available. Aiming at the preclinical identification of novel therapeutic options, we here investigate the functional relevance of phosphatidylinositol-3'-kinase (PI3-kinase)/Akt signaling in MLS. Experimental procedures: Immunohistochemical and FISH analyses of PI3-kinase/Akt signaling effectors were performed in a large cohort of clinical MLS tumor specimens. Mutational burden was studied by targeted next-generation sequencing (NGS; Illumina MiSeq). PI3-kinase/Akt-mediated signaling transduction was modulated by specific RNAi knockdown and a pharmacological approach applying the small molecule inhibitor BKM120 (Buparlisib; NVP-BKM120). Cell proliferation and FACS assays were performed in different MLS cell lines. An established MLS chorioallantoic membrane model (CAM) was employed for in vivo confirmation of the preclinical in vitro data. Results: In a significant subset of MLS tumor specimens, immunohistochemical staining revealed elevated phosphorylation levels of various signaling components, indicating that activation of PI3-kinase/Akt signaling is a frequent feature in MLS. Activating PIK3CA mutations and loss of PTEN as mechanism for PI3-kinase/Akt activation were detected in ≈15%. PI3-kinase inhibition significantly suppressed the signaling cascade, associated with reduction of MLS cell viability and induction of apoptosis in vitro and in vivo. Conclusions: Our preclinical study emphasizes the pivotal role of the PI3-kinase/Akt signaling cascade in MLS pathogenesis and indicates the occurrence of specific mutational aberrations apart from the pathognomonic FUS-DDIT3 gene fusion. Our in vitro and in vivo results suggest that targeting the PI3-kinase/Akt signaling pathway provides a rational, molecularly founded therapeutic strategy in the treatment of MLS. Citation Format: Marcel Trautmann, Magdalene Cyra, Christian Bertling, Ilka Isfort, Bianca Altvater, Claudia Rossig, Susanne Hafner, Thomas Simmet, Jessica Becker, Inga Grünewald, Pierre Åman, Reinhard Büttner, Eva Wardelmann, Sebastian Huss, Wolfgang Hartmann. Activation of phosphatidylinositol-3′-kinase/Akt signaling in myxoid liposarcoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 3939.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 24, No. 2_Supplement ( 2018-01-15), p. B04-B04
    Abstract: Introduction: Myxoid liposarcoma (MLS) is the second most common type of liposarcoma and an aggressive disease with particular propensity to develop hematogenic metastases. Ninety percent of MLS are characterized by a reciprocal translocation t(12;16) (q13;p11), leading to the pathogenic gene fusion of FUS and DDIT3. The resulting chimeric FUS-DDIT3 fusion protein is suggested to play a crucial role in MLS pathogenesis, although the specific mechanism of action remains to be substantiated. Aiming at the preclinical identification of novel therapeutic options, we here investigate the functional relevance of FUS-DDIT3 in IGF-IR/PI3K/Akt signal transduction. Experimental Procedures: Immunohistochemical analyses of IGF-IR/PI3K/Akt signaling effectors and modulators were performed in a comprehensive cohort of clinical MLS specimens. FUS-DDIT3-dependent activation of the IGF-IR/PI3K/Akt signaling cascade was analyzed by siRNA and immunoblotting in vitro. Cell proliferation and FACS assays were performed in multiple tumor-derived MLS cell lines. An established MLS chorioallantoic membrane model (CAM) was employed for in vivo confirmation of the preclinical in vitro data. Results: In a significant subset of MLS specimens, immunohistochemical staining revealed elevated phosphorylation levels of various signaling components, representing a strong indication of activated IGF-IR/PI3K/Akt signaling to be a frequent feature in MLS. IGF-IR inhibition significantly suppressed the IGF-IR/PI3K/Akt signaling cascade, associated with impairment of MLS cell viability and induction of apoptosis in vitro and in vivo. Furthermore, siRNA-mediated knockdown of FUS-DDIT3 led to dephosphorylation of IGF-IR/PI3K/Akt signaling components, implying that the FUS-DDIT3 fusion protein is involved in the IGF-IR regulated signaling cascade. Conclusions: Our preclinical study emphasizes the pivotal role of the IGF-IR/PI3K/Akt signaling pathway in MLS pathogenesis and indicates its functional dependence on the MLS-specific FUS-DDIT3 fusion protein. Furthermore, our in vitro and in vivo results demonstrate that targeting the IGF-IR/PI3K/Akt signaling pathway provides a rational, molecularly founded therapeutic strategy in the treatment of MLS. Citation Format: Marcel Trautmann, Magdalene Alice Cyra, Christian Bertling, Ilka Isfort, Jasmin Menzel, Konrad Steinestel, Inga Grünewald, Bianca Altvater, Claudia Rossig, Pierre Åman, Eva Wardelmann, Sebastian Huss, Wolfgang Hartmann. Functional characterization of IGF-IR/PI3K/Akt signaling in myxoid liposarcoma [abstract]. In: Proceedings of the AACR Conference on Advances in Sarcomas: From Basic Science to Clinical Translation; May 16-19, 2017; Philadelphia, PA. Philadelphia (PA): AACR; Clin Cancer Res 2018;24(2_Suppl):Abstract nr B04.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: EMBO Molecular Medicine, EMBO, Vol. 11, No. 5 ( 2019-05)
    Type of Medium: Online Resource
    ISSN: 1757-4676 , 1757-4684
    Language: English
    Publisher: EMBO
    Publication Date: 2019
    detail.hit.zdb_id: 2485479-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 23, No. 20 ( 2017-10-15), p. 6227-6238
    Abstract: Purpose: Myxoid liposarcoma is an aggressive disease with particular propensity to develop hematogenic metastases. Over 90% of myxoid liposarcoma are characterized by a reciprocal t(12;16)(q13;p11) translocation. The resulting chimeric FUS–DDIT3 fusion protein plays a crucial role in myxoid liposarcoma pathogenesis; however, its specific impact on oncogenic signaling pathways remains to be substantiated. We here investigate the functional role of FUS–DDIT3 in IGF-IR/PI3K/Akt signaling driving myxoid liposarcoma pathogenesis. Experimental Design: Immunohistochemical evaluation of key effectors of the IGF-IR/PI3K/Akt signaling axis was performed in a comprehensive cohort of myxoid liposarcoma specimens. FUS–DDIT3 dependency and biological function of the IGF-IR/PI3K/Akt signaling cascade were analyzed using a HT1080 fibrosarcoma-based myxoid liposarcoma tumor model and multiple tumor–derived myxoid liposarcoma cell lines. An established myxoid liposarcoma avian chorioallantoic membrane model was used for in vivo confirmation of the preclinical in vitro results. Results: A comprehensive subset of myxoid liposarcoma specimens showed elevated expression and phosphorylation levels of various IGF-IR/PI3K/Akt signaling effectors. In HT1080 fibrosarcoma cells, overexpression of FUS-DDIT3 induced aberrant IGF-IR/PI3K/Akt pathway activity, which was dependent on transcriptional induction of the IGF2 gene. Conversely, RNAi-mediated FUS–DDIT3 knockdown in myxoid liposarcoma cells led to an inactivation of IGF-IR/PI3K/Akt signaling associated with diminished IGF2 mRNA expression. Treatment of myxoid liposarcoma cell lines with several IGF-IR inhibitors resulted in significant growth inhibition in vitro and in vivo. Conclusions: Our preclinical study substantiates the fundamental role of the IGF-IR/PI3K/Akt signaling pathway in myxoid liposarcoma pathogenesis and provides a mechanism-based rationale for molecular- targeted approaches in myxoid liposarcoma cancer therapy. Clin Cancer Res; 23(20); 6227–38. ©2017 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 18, No. 4 ( 2019-04-01), p. 834-844
    Abstract: Myxoid liposarcoma (MLS) is an aggressive soft-tissue tumor characterized by a specific reciprocal t(12;16) translocation resulting in expression of the chimeric FUS–DDIT3 fusion protein, an oncogenic transcription factor. Similar to other translocation-associated sarcomas, MLS is characterized by a low frequency of somatic mutations, albeit a subset of MLS has previously been shown to be associated with activating PIK3CA mutations. This study was performed to assess the prevalence of PI3K/Akt signaling alterations in MLS and the potential of PI3K-directed therapeutic concepts. In a large cohort of MLS, key components of the PI3K/Akt signaling cascade were evaluated by next generation seqeuncing (NGS), fluorescence in situ hybridization (FISH), and immunohistochemistry (IHC). In three MLS cell lines, PI3K activity was inhibited by RNAi and the small-molecule PI3K inhibitor BKM120 (buparlisib) in vitro. An MLS cell line–based avian chorioallantoic membrane model was applied for in vivo confirmation. In total, 26.8% of MLS cases displayed activating alterations in PI3K/Akt signaling components, with PIK3CA gain-of-function mutations representing the most prevalent finding (14.2%). IHC suggested PI3K/Akt activation in a far larger subgroup of MLS, implying alternative mechanisms of pathway activation. PI3K-directed therapeutic interference showed that MLS cell proliferation and viability significantly depended on PI3K-mediated signals in vitro and in vivo. Our preclinical study underlines the elementary role of PI3K/Akt signals in MLS tumorigenesis and provides a molecularly based rationale for a PI3K-targeted therapeutic approach which may be particularly effective in the subgroup of tumors carrying activating genetic alterations in PI3K/Akt signaling components.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 2703-2703
    Abstract: Background: Extraskeletal myxoid chondrosarcomas (EMCs) are rare mesenchymal neoplasms comprising approx. 3% of all soft tissue tumors. EMCs arise mainly from the deep soft tissues of the extremities, accompanied with high rates of recurrence and metastases. The molecular hallmarks of EMCs are various cytogenetic NR4A3 rearrangements, generating chimeric -NR4A3 proteins. The most common reciprocal translocation t(9;22)(q22;q12), results in a fusion of the EWS RNA-binding protein 1 gene (EWSR1) to the nuclear receptor subfamily 4, group A, member 3 gene (NR4A3 or TEC; approximately 75% of cases). Further cytogenetic t(9;17)(q22;q11) rearrangements involve TAF15 RNA polymerase II, TATA box binding protein (TBP)-associated factor (TAF15; approximately 15% of cases). The less frequent reciprocal translocations t(9;15)(q22;q21) and t(9;3)(q22;q12), result in transcription factor 12 (TCF12)-NR4A3 and TRK-fused gene (TFG)-NR4A3 fusion proteins. Although the oncogenic -NR4A3 fusion transcripts seem to have a crucial role in EMC tumorigenesis and progression, the specific biological function and the mechanism of action remain to be defined. Methods: We characterized the cytogenetic rearrangements of 25 comprehensive EMC tumors by RT-PCR and/or fluorescence in situ hybridization (FISH). Next generation sequencing (NGS) was performed (Illumina MiSeq platform) to reveal additional genetic alterations besides the known chromosomal translocation. Therefore, a comprehensive cancer panel was designed, comprising 27 cancer-related genes known to be frequently mutated across various malignancies. Results: Overall, fusion transcripts were detected in 22 of 25 samples (88%). Sixteen were positive for the EWSR1-NR4A3 and six for the TAF15-NR4A3 fusion gene. The t(9;15) and t(9;3) translocations, resulting in TCF12-NR4A3 and TFG-NR4A3 fusion proteins were not identified in any EMC case. In Addition, several known oncogenic mutations were detected which have not been previously reported in EMC. Conclusions: The combination of RT-PCR and FISH on paraffin-embedded tissue is a sensitive and specific method for the molecular detection of the pathogenic translocations to be applied in the differential diagnosis of extraskeletal myxoid chondrosarcomas. Our results emphasize that cytogenetic NR4A3 rearrangements are the initiating events in the pathogenesis of EMC. Furthermore, our results indicate the occurrence of additional genetic aberrations providing a rational base for novel targeted therapeutic approaches. Citation Format: Marcel Trautmann, Magdalene Cyra, Ilka Isfort, Inga Grünewald, Konrad Steinestel, Sebastian Huss, Reinhard Büttner, Eva Wardelmann, Wolfgang Hartmann. Extraskeletal myxoid chondrosarcoma: a clinicopathologic and molecular study reveals novel genetic aberrations by targeted next-generation sequencing [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 2703. doi:10.1158/1538-7445.AM2017-2703
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 22_Supplement ( 2017-11-15), p. B04-B04
    Abstract: Introduction: Myxoid liposarcoma (MLS) accounts for 30-35% of all LS cases and is the second most common type of liposarcoma. One third of MLS lesions will become metastatic with tumors spreading to unusual bone and soft tissue locations. Ninety percent of MLS are characterized by a specific reciprocal translocation t (12; 16) (q13; p11), leading to the pathogenic gene fusion of FUS and DDIT3. The resulting chimeric FUS-DDIT3 fusion protein is suggested to play a crucial role in MLS pathogenesis, although the specific biological function and the mechanism of action remain to be defined. Aiming at the preclinical identification of novel therapeutic options in vitro and in vivo, we investigate the functional relevance of IGF-IR and PI3K/AKT/GSK3-beta signaling in primary MLS and tumor-derived cell lines. Methods: Immunohistochemical analyses of IGF-IR and PI3K/AKT/GSK3-beta signaling effectors and modulators were performed in a comprehensive cohort of primary MLS specimens. FUS-DDIT3-dependent activation of the PI3K/AKT/GSK3-beta signaling cascade was analyzed by siRNA knockdown experiments and protein immunoblotting in vitro. Cell proliferation and FACS assays were performed in two different MLS cell lines. An in vivo tumor model was successfully established performing the chicken chorioallantoic membrane (CAM) assay. Results: In a significant subset of MLS specimens, immunohistochemical staining revealed elevated phosphorylation levels of the respective signaling components, indicating that activated IGF-IR and PI3K/AKT/GSK3-beta signaling is a frequent feature in MLS. IGF-IR inhibition significantly suppressed the PI3K/AKT/GSK3-beta downstream cascade, associated with reduced phosphorylation levels of several signaling components, impairment of MLS cell viability and induction of apoptosis in vitro and in vivo. Furthermore, siRNA-mediated knockdown of FUS-DDIT3 lead to dephosphorylation of PI3K/AKT/GSK3-beta signaling components, implying that the FUS-DDIT3 fusion protein is involved in the IGF-IR regulated signaling cascade. Conclusion: Our study emphasizes the pivotal role of IGF-IR and PI3K/AKT/GSK3-beta signaling in MLS pathogenesis and indicates its functional dependence on the characteristic FUS-DDIT3 fusion protein. Furthermore, our in vitro and in vivo results demonstrate that targeting the IGF-IR and PI3K/AKT/GSK3-beta signaling pathway might provide a specific, molecular founded therapeutic strategy in the treatment of MLS. Citation Format: Marcel Trautmann, Christian Bertling, Jasmin Menzel, Magdalene Cyra, Konrad Steinestel, Inga Grünewald, Pierre Åman, Eva Wardelmann, Sebastian Huss, Wolfgang Hartmann. Oncogenic relevance of IGF-IR and PI3K/AKT/GSK3-beta signaling in myxoid liposarcoma [abstract]. In: Proceedings of the AACR International Conference: New Frontiers in Cancer Research; 2017 Jan 18-22; Cape Town, South Africa. Philadelphia (PA): AACR; Cancer Res 2017;77(22 Suppl):Abstract nr B04.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages