Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Subjects(RVK)
  • 1
    In: Journal of Virology, American Society for Microbiology, Vol. 93, No. 6 ( 2019-03-15)
    Abstract: The acute antiviral response is mediated by a family of interferon-stimulated genes (ISGs), providing cell-intrinsic immunity. Mutations in genes encoding these proteins are often associated with increased susceptibility to viral infections. One family of ISGs with antiviral function is the interferon-inducible transmembrane proteins (IFITMs), of which IFITM3 has been studied extensively. In contrast, IFITM1 has not been studied in detail. Since IFITM1 can localize to the plasma membrane, we investigated its function with a range of enveloped viruses thought to infect cells by fusion with the plasma membrane. Overexpression of IFITM1 prevented infection by a number of Paramyxoviridae and Pneumoviridae , including respiratory syncytial virus (RSV), mumps virus, and human metapneumovirus (HMPV). IFITM1 also restricted infection with an enveloped DNA virus that can enter via the plasma membrane, herpes simplex virus 1 (HSV-1). To test the importance of plasma membrane localization for IFITM1 function, we identified blocks of amino acids in the conserved intracellular loop (CIL) domain that altered the subcellular localization of the protein and reduced antiviral activity. By screening reported data sets, 12 rare nonsynonymous single nucleotide polymorphisms (SNPs) were identified in human IFITM1 , some of which are in the CIL domain. Using an Ifitm1 −/− mouse, we show that RSV infection was more severe, thereby extending the range of viruses restricted in vivo by IFITM proteins and suggesting overall that IFITM1 is broadly antiviral and that this antiviral function is associated with cell surface localization. IMPORTANCE Host susceptibility to viral infection is multifactorial, but early control of viruses not previously encountered is predominantly mediated by the interferon-stimulated gene (ISG) family. There are upwards of 300 of these genes, the majority of which do not have a clearly defined function or mechanism of action. The cellular location of these proteins may have an important effect on their function. One ISG located at the plasma membrane is interferon-inducible transmembrane protein 1 (IFITM1). Here we demonstrate that IFITM1 can inhibit infection with a range of viruses that enter via the plasma membrane. Mutant IFITM1 proteins that were unable to localize to the plasma membrane did not restrict viral infection. We also observed for the first time that IFITM1 plays a role in vivo , and Ifitm1 −/− mice were more susceptible to viral lung infection. These data contribute to our understanding of how ISGs prevent viral infections.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 1495529-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Virology, American Society for Microbiology, Vol. 91, No. 15 ( 2017-08)
    Abstract: Respiratory syncytial virus (RSV) is the most important viral agent of severe pediatric respiratory tract disease worldwide, but it lacks a licensed vaccine or suitable antiviral drug. A live attenuated chimeric bovine/human parainfluenza virus type 3 (rB/HPIV3) was developed previously as a vector expressing RSV fusion (F) protein to confer bivalent protection against RSV and HPIV3. In a previous clinical trial in virus-naive children, rB/HPIV3 was well tolerated but the immunogenicity of wild-type RSV F was unsatisfactory. We previously modified RSV F with a designed disulfide bond (DS) to increase stability in the prefusion (pre-F) conformation and to be efficiently packaged in the vector virion. Here, we further stabilized pre-F by adding both disulfide and cavity-filling mutations (DS-Cav1), and we also modified RSV F codon usage to have a lower CpG content and a higher level of expression. This RSV F open reading frame was evaluated in rB/HPIV3 in three forms: (i) pre-F without vector-packaging signal, (ii) pre-F with vector-packaging signal, and (iii) secreted pre-F ectodomain trimer. Despite being efficiently expressed, the secreted pre-F was poorly immunogenic. DS-Cav1 stabilized pre-F, with or without packaging, induced higher titers of pre-F specific antibodies in hamsters, and improved the quality of RSV-neutralizing serum antibodies. Codon-optimized RSV F containing fewer CpG dinucleotides had higher F expression, replicated more efficiently in vivo , and was more immunogenic. The combination of DS-Cav1 pre-F stabilization, optimized codon usage, reduced CpG content, and vector packaging significantly improved vector immunogenicity and protective efficacy against RSV. This provides an improved vectored RSV vaccine candidate suitable for pediatric clinical evaluation. IMPORTANCE RSV and HPIV3 are the first and second leading viral causes of severe pediatric respiratory disease worldwide. Licensed vaccines or suitable antiviral drugs are not available. We are developing a chimeric rB/HPIV3 vector expressing RSV F as a bivalent RSV/HPIV3 vaccine and have been evaluating means to increase RSV F immunogenicity. In this study, we evaluated the effects of improved stabilization of F in the pre-F conformation and of codon optimization resulting in reduced CpG content and greater pre-F expression. Reduced CpG content dampened the interferon response to infection, promoting higher replication and increased F expression. We demonstrate that improved pre-F stabilization and strategic manipulation of codon usage, together with efficient pre-F packaging into vector virions, significantly increased F immunogenicity in the bivalent RSV/HPIV3 vaccine. The improved immunogenicity included induction of increased titers of high-quality complement-independent antibodies with greater pre-F site Ø binding and greater protection against RSV challenge.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2017
    detail.hit.zdb_id: 1495529-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Virology, American Society for Microbiology, Vol. 92, No. 18 ( 2018-09-15)
    Abstract: Dengue virus is the most globally prevalent mosquito-transmitted virus. Primary infection with one of four cocirculating serotypes (DENV-1 to -4) causes a febrile illness, but secondary infection with a heterologous serotype can result in severe disease, due in part to antibody-dependent enhancement of infection (ADE). In ADE, cross-reactive but nonneutralizing antibodies, or subprotective levels of neutralizing antibodies, promote uptake of antibody-opsonized virus in Fc-γ receptor-positive cells. Thus, elicitation of broadly neutralizing antibodies (bNAbs), but not nonneutralizing antibodies, is desirable for dengue vaccine development. Domain III of the envelope glycoprotein (EDIII) is targeted by bNAbs and thus is an attractive immunogen. However, immunization with EDIII results in sera with limited neutralization breadth. We developed “resurfaced” EDIII immunogens (rsDIIIs) in which the A/G strand epitope that is targeted by bNAb 4E11 is maintained but less desirable epitopes are masked. RsDIIIs bound 4E11, but not serotype-specific or nonneutralizing antibodies. One rsDIII and, unexpectedly, wild-type (WT) DENV-2 EDIII elicited cross-neutralizing antibody responses against DENV-1 to -3 in mice. While these sera were cross-neutralizing, they were not sufficiently potent to protect AG129 immunocompromised mice at a dose of 200 μl (50% focus reduction neutralization titer [FRNT 50 ], ∼1:60 to 1:130) against mouse-adapted DENV-2. Our results provide insight into immunogen design strategies based on EDIII. IMPORTANCE Dengue virus causes approximately 390 million infections per year. Primary infection by one serotype causes a self-limiting febrile illness, but secondary infection by a heterologous serotype can result in severe dengue syndrome, which is characterized by hemorrhagic fever and shock syndrome. This severe disease is thought to arise because of cross-reactive, non- or poorly neutralizing antibodies from the primary infection that are present in serum at the time of secondary infection. These cross-reactive antibodies enhance the infection rather than controlling it. Therefore, induction of a broadly and potently neutralizing antibody response is desirable for dengue vaccine development. Here, we explore a novel strategy for developing immunogens based on domain III of the E glycoprotein, where undesirable epitopes (nonneutralizing or nonconserved) are masked by mutation. This work provides fundamental insight into the immune response to domain III that can be leveraged for future immunogen design.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2018
    detail.hit.zdb_id: 1495529-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Clinical Investigation, American Society for Clinical Investigation, Vol. 115, No. 9 ( 2005-9-1), p. 2341-2350
    Type of Medium: Online Resource
    ISSN: 0021-9738
    Language: English
    Publisher: American Society for Clinical Investigation
    Publication Date: 2005
    detail.hit.zdb_id: 2018375-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Virology, American Society for Microbiology, Vol. 93, No. 8 ( 2019-04-15)
    Abstract: Antiviral therapies that impede virus entry are attractive because they act on the first phase of the infectious cycle. Drugs that target pathways common to multiple viruses are particularly desirable when laboratory-based viral identification may be challenging, e.g., in an outbreak setting. We are interested in identifying drugs that block both Ebola virus (EBOV) and Lassa virus (LASV), two unrelated but highly pathogenic hemorrhagic fever viruses that have caused outbreaks in similar regions in Africa and share features of virus entry: use of cell surface attachment factors, macropinocytosis, endosomal receptors, and low pH to trigger fusion in late endosomes. Toward this goal, we directly compared the potency of eight drugs known to block EBOV entry with their potency as inhibitors of LASV entry. Five drugs (amodiaquine, apilimod, arbidol, niclosamide, and zoniporide) showed roughly equivalent degrees of inhibition of LASV and EBOV glycoprotein (GP)-bearing pseudoviruses; three (clomiphene, sertraline, and toremifene) were more potent against EBOV. We then focused on arbidol, which is licensed abroad as an anti-influenza drug and exhibits activity against a diverse array of clinically relevant viruses. We found that arbidol inhibits infection by authentic LASV, inhibits LASV GP-mediated cell-cell fusion and virus-cell fusion, and, reminiscent of its activity on influenza virus hemagglutinin, stabilizes LASV GP to low-pH exposure. Our findings suggest that arbidol inhibits LASV fusion, which may partly involve blocking conformational changes in LASV GP. We discuss our findings in terms of the potential to develop a drug cocktail that could inhibit both LASV and EBOV. IMPORTANCE Lassa and Ebola viruses continue to cause severe outbreaks in humans, yet there are only limited therapeutic options to treat the deadly hemorrhagic fever diseases they cause. Because of overlapping geographic occurrences and similarities in mode of entry into cells, we seek a practical drug or drug cocktail that could be used to treat infections by both viruses. Toward this goal, we directly compared eight drugs, approved or in clinical testing, for the ability to block entry mediated by the glycoproteins of both viruses. We identified five drugs with approximately equal potencies against both. Among these, we investigated the modes of action of arbidol, a drug licensed abroad to treat influenza infections. We found, as shown for influenza virus, that arbidol blocks fusion mediated by the Lassa virus glycoprotein. Our findings encourage the development of a combination of approved drugs to treat both Lassa and Ebola virus diseases.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 1495529-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Virology, American Society for Microbiology, Vol. 91, No. 14 ( 2017-07-15)
    Abstract: Respiratory syncytial virus (RSV) infections remain a major cause of respiratory disease and hospitalizations among infants. Infection recurs frequently and establishes a weak and short-lived immunity. To date, RSV immunoprophylaxis and vaccine research is mainly focused on the RSV fusion (F) protein, but a vaccine remains elusive. The RSV F protein is a highly conserved surface glycoprotein and is the main target of neutralizing antibodies induced by natural infection. Here, we analyzed an internalization process of antigen-antibody complexes after binding of RSV-specific antibodies to RSV antigens expressed on the surface of infected cells. The RSV F protein and attachment (G) protein were found to be internalized in both infected and transfected cells after the addition of either RSV-specific polyclonal antibodies (PAbs) or RSV glycoprotein-specific monoclonal antibodies (MAbs), as determined by indirect immunofluorescence staining and flow-cytometric analysis. Internalization experiments with different cell lines, well-differentiated primary bronchial epithelial cells (WD-PBECs), and RSV isolates suggest that antibody internalization can be considered a general feature of RSV. More specifically for RSV F, the mechanism of internalization was shown to be clathrin dependent. All RSV F-targeted MAbs tested, regardless of their epitopes, induced internalization of RSV F. No differences could be observed between the different MAbs, indicating that RSV F internalization was epitope independent. Since this process can be either antiviral, by affecting virus assembly and production, or beneficial for the virus, by limiting the efficacy of antibodies and effector mechanism, further research is required to determine the extent to which this occurs in vivo and how this might impact RSV replication. IMPORTANCE Current research into the development of new immunoprophylaxis and vaccines is mainly focused on the RSV F protein since, among others, RSV F-specific antibodies are able to protect infants from severe disease, if administered prophylactically. However, antibody responses established after natural RSV infections are poorly protective against reinfection, and high levels of antibodies do not always correlate with protection. Therefore, RSV might be capable of interfering, at least partially, with antibody-induced neutralization. In this study, a process through which surface-expressed RSV F proteins are internalized after interaction with RSV-specific antibodies is described. One the one hand, this antigen-antibody complex internalization could result in an antiviral effect, since it may interfere with virus particle formation and virus production. On the other hand, this mechanism may also reduce the efficacy of antibody-mediated effector mechanisms toward infected cells.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2017
    detail.hit.zdb_id: 1495529-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Virology, American Society for Microbiology, Vol. 91, No. 15 ( 2017-08)
    Abstract: Palivizumab, a humanized murine monoclonal antibody that recognizes antigenic site II on both the prefusion (pre-F) and postfusion (post-F) conformations of the respiratory syncytial virus (RSV) F glycoprotein, is the only prophylactic agent approved for use for the treatment of RSV infection. However, its relatively low neutralizing potency and high cost have limited its use to a restricted population of infants at high risk of severe disease. Previously, we isolated a high-potency neutralizing antibody, 5C4, that specifically recognizes antigenic site Ø at the apex of the pre-F protein trimer. We compared in vitro and in vivo the potency and protective efficacy of 5C4 and the murine precursor of palivizumab, antibody 1129. Both antibodies were synthesized on identical murine backbones as either an IgG1 or IgG2a subclass and evaluated for binding to multiple F protein conformations, in vitro inhibition of RSV infection and propagation, and protective efficacy in mice. Although 1129 and 5C4 had similar pre-F protein binding affinities, the 5C4 neutralizing activity was nearly 50-fold greater than that of 1129 in vitro . In BALB/c mice, 5C4 reduced the peak titers of RSV 1,000-fold more than 1129 did in both the upper and lower respiratory tracts. These data indicate that antibodies specific for antigenic site Ø are more efficacious at preventing RSV infection than antibodies specific for antigenic site II. Our data also suggest that site Ø-specific antibodies may be useful for the prevention or treatment of RSV infection and support the use of the pre-F protein as a vaccine antigen. IMPORTANCE There is no vaccine yet available to prevent RSV infection. The use of the licensed antibody palivizumab, which recognizes site II on both the pre-F and post-F proteins, is restricted to prophylaxis in neonates at high risk of severe RSV disease. Recommendations for using passive immunization in the general population or for therapy in immunocompromised persons with persistent infection is limited because of cost, determined from the high doses needed to compensate for its relatively low neutralizing potency. Prior efforts to improve the in vitro potency of site II-specific antibodies did not translate to significant in vivo dose sparing. We isolated a pre-F protein-specific, high-potency neutralizing antibody (5C4) that recognizes antigenic site Ø and compared its efficacy to that of the murine precursor of palivizumab (antibody 1129) matched for isotype and pre-F protein binding affinities. Our findings demonstrate that epitope specificity is an important determinant of antibody neutralizing potency, and defining the mechanisms of neutralization has the potential to identify improved products for the prevention and treatment of RSV infection.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2017
    detail.hit.zdb_id: 1495529-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Virology, American Society for Microbiology, Vol. 88, No. 21 ( 2014-11), p. 12180-12192
    Abstract: Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has reemerged to cause profound epidemics of fever, rash, and arthralgia throughout sub-Saharan Africa, Southeast Asia, and the Caribbean. Like other arthritogenic alphaviruses, mechanisms of CHIKV pathogenesis are not well defined. Using the attenuated CHIKV strain 181/25 and virulent strain AF15561, we identified a residue in the E2 viral attachment protein that is a critical determinant of viral replication in cultured cells and pathogenesis in vivo . Viruses containing an arginine at E2 residue 82 displayed enhanced infectivity in mammalian cells but reduced infectivity in mosquito cells and diminished virulence in a mouse model of CHIKV disease. Mice inoculated with virus containing an arginine at this position exhibited reduced swelling at the site of inoculation with a concomitant decrease in the severity of necrosis in joint-associated tissues. Viruses containing a glycine at E2 residue 82 produced higher titers in the spleen and serum at early times postinfection. Using wild-type and glycosaminoglycan (GAG)-deficient Chinese hamster ovary (CHO) cell lines and soluble GAGs, we found that an arginine at residue 82 conferred greater dependence on GAGs for infection of mammalian cells. These data suggest that CHIKV E2 interactions with GAGs diminish dissemination to lymphoid tissue, establishment of viremia, and activation of inflammatory responses early in infection. Collectively, these results suggest a function for GAG utilization in regulating CHIKV tropism and host responses that contribute to arthritis. IMPORTANCE CHIKV is a reemerging alphavirus of global significance with high potential to spread into new, immunologically naive populations. The severity of CHIKV disease, particularly its propensity for chronic musculoskeletal manifestations, emphasizes the need for identification of genetic determinants that dictate CHIKV virulence in the host. To better understand mechanisms of CHIKV pathogenesis, we probed the function of an amino acid polymorphism in the E2 viral attachment protein using a mouse model of CHIKV musculoskeletal disease. In addition to influencing glycosaminoglycan utilization, we identified roles for this polymorphism in differential infection of mammalian and mosquito cells and targeting of CHIKV to specific tissues within infected mice. These studies demonstrate a correlation between CHIKV tissue tropism and virus-induced pathology modulated by a single polymorphism in E2, which in turn illuminates potential targets for vaccine and antiviral drug development.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2014
    detail.hit.zdb_id: 1495529-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Virology, American Society for Microbiology, Vol. 80, No. 6 ( 2006-03-15), p. 3078-3082
    Abstract: Mice infected with reovirus develop abnormalities in glucose homeostasis. Reovirus strain type 3 Abney (T3A) was capable of systemic infection of nonobese diabetic (NOD) mice, an experimental model of autoimmune diabetes. Reovirus antigen was detected in pancreatic islets of T3A-infected mice, and primary cultures of pancreatic islets from NOD mice supported T3A growth. Significantly fewer T3A-infected animals compared to uninfected controls developed diabetes. However, despite the alteration in diabetes penetrance, insulitis was evident in T3A-infected mice. These results suggest that viral infection of NOD mice alters autoimmune responses to β-cell antigens and thereby delays development of diabetes.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2006
    detail.hit.zdb_id: 1495529-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Cell Host & Microbe, Elsevier BV, Vol. 18, No. 3 ( 2015-09), p. 382-
    Type of Medium: Online Resource
    ISSN: 1931-3128
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 2276339-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages