Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2019
    In:  Physical Chemistry Chemical Physics Vol. 21, No. 9 ( 2019), p. 4839-4853
    In: Physical Chemistry Chemical Physics, Royal Society of Chemistry (RSC), Vol. 21, No. 9 ( 2019), p. 4839-4853
    Type of Medium: Online Resource
    ISSN: 1463-9076 , 1463-9084
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2019
    detail.hit.zdb_id: 1476283-3
    detail.hit.zdb_id: 1476244-4
    detail.hit.zdb_id: 1460656-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 14_Supplement ( 2016-07-15), p. CT032-CT032
    Abstract: Immunotherapeutic approaches have evolved as promising and valid alternatives to available conventional cancer treatments. Amongst others, vaccination with tumor antigen-encoding RNAs by local administration is currently successfully employed in various clinical trials. To allow for a more efficient targeting of antigen-presenting cells (APCs) and to overcome potential technical challenges associated with local administration, we have developed a novel RNA immunotherapeutic for systemic application based on a fixed set of four liposome complexed RNA drug products (RNA(LIP)), each encoding one shared melanoma-associated antigen. The novel RNA(LIP) formulation was engineered (i) to protect RNA from degradation by plasma RNases and (ii) to enable directed in vivo targeting of APCs in lymphoid compartments, thus (iii) allowing for intravenous administration of multiple RNA products advancing from local to systemic targeting of APCs. Here, RNA(LIP) products trigger a Toll-like receptor (TLR)-mediated Interferon-α (IFN-α) release from plasmacytoid dendritic cells (DCs) and macrophages stimulating DC maturation and hence inducing innate immune mechanisms as well as potent vaccine antigen-specific immune responses. Notably, BioNTech RNA Pharmaceuticals′ RNA(LIP) formulation is a universally applicable potent novel vaccine class for intravenous APC targeting and the induction of potent synchronized adaptive and type-I interferon-mediated innate immune responses for cancer immunotherapy. Similar to other liposomal drugs, the ready-to-use RNA(LIP) products are prepared individually in a straight-forward manner directly prior to use from three components, namely solutions containing RNA drug product, NaCl diluent, and liposome excipient, that are provided as a kit. A multi-center phase I/II trial to clinically validate this pioneering RNA(LIP) formulation for the treatment of malignant melanoma was initiated in 2015 (NCT02410733). The objective of the clinical trial is to study the feasibility, safety, tolerability, immunogenicity and evaluate potential clinical activity of the RNA(LIP) immunotherapy concept. Detailed information on the ongoing trial, the recruitment and treatment status as well as data on the assessment of vaccine-induced immune responses will be presented. Citation Format: Robert A. Jabulowsky, Carmen Loquai, Mustafa Diken, Lena M. Kranz, Heinrich Haas, Sebastian Attig, Nicole Bidmon, Janina Buck, Evelyna Derhovanessian, Jan Diekmann, Daniel Fritz, Veronika Jahndel, Alexandra Kemmer-Brueck, Klaus Kuehlcke, Andreas N. Kuhn, Peter Langguth, Ulrich Luxemburger, Martin Meng, Felicitas Mueller, Richard Rae, Fatih Sari, Doreen Schwarck-Kokarakis, Christine Seck, Kristina Spieß, Meike Witt, Jessica C. Hassel, Jochen Utikal, Roland Kaufmann, Sebastian Kreiter, Christoph Huber, Oezlem Tuereci, Ugur Sahin. A first-in-human phase I/II clinical trial assessing novel mRNA-lipoplex nanoparticles for potent cancer immunotherapy in patients with malignant melanoma. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr CT032.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 15_Supplement ( 2015-08-01), p. CT201-CT201
    Abstract: The Mutanome Engineered RNA Immuno-Therapy (MERIT) consortium will clinically and industrially validate a pioneering RNA-based immunotherapy concept that targets individual tumor antigens and tumor-specific mutations in triple negative breast cancer (TNBC) patients. This biomarker-guided, personalized therapy is a collaborative effort of five partners from academia and industry and is funded by the European Commission's FP7 and led by BioNTech AG. TNBC is an aggressive, molecularly heterogeneous cancer that accounts for 20% of all breast cancer patients. The 5-year survival rate is less than 80%. The molecular heterogeneity across TNBCs results in a lack of common targetable molecular alterations, and thus targeted therapies frequently fail to provide clinical benefit. The MERIT concept attempts to address this unmet medical need. The personalized treatment consists in (i) injecting vaccines containing “off the shelf” mRNAs selected from a pre-synthesized mRNA vaccine warehouse (MERIT WAREHOUSE) that encode tumor specific antigens expressed in the respective patient's tumor; and (ii) thereafter mRNAs engineered on-demand that encode patient-specific sequence stretches incorporating non-synonymous mutations identified by next generation sequencing (NGS) and ranked by predicted immunogenicity (MERIT MUTANOME). The mRNAs are administered intravenously as a nanoparticulate lipoplex formulation and are selectively delivered to splenic APCs. The encoded antigens are translated into proteins that are rapidly processed. Subsequent peptide presentation on the surface of APCs induces antigen-specific T cell responses. The central part of the MERIT project, a multi-center first in human trial, will assess the feasibility, safety and biological efficacy of this innovative personalized immunotherapy in TNBC patients. After discussing the regulatory challenges with the German national regulatory agency (PEI), a phase I study is now in preparation. The trial will start in Q2 2015 in five academic centers in Europe and will recruit thirty TNBC patients. Furthermore, the project includes a comprehensive T-cell immunomonitoring and biomarker program. Moreover, an extensive research program will address the optimization of algorithms for improved prediction of immunogenic mutations. Additionally, compounds to enhance vaccine efficacy will be developed and improved to support further clinical development. We have established a RNA delivery platform as well as a MERIT WAREHOUSE containing mRNAs coding for a selection of TNBC specific antigens. Additionally, we have built a multi-disciplinary clinical workflow and trial design tailored to this unique therapeutic concept. We will describe the therapeutic concept and the critical skills, and methodologies required for this project, including cancer genomics, NGS, bioinformatics, tumor immunomics, industrial drug development, GMP manufacturing, clinical immunotherapy and immunological monitoring. Citation Format: Sandra Heesch, Cedrik M. Britten, Valesca Bukur, Janina Buck, John Castle, Jan Diekmann, Mustafa Diken, Katrin Frenzel, Sebastian Kreiter, Andreas N. Kuhn, Klaus Kuehlcke, Martin Loewer, Heinrich Haas, Alexandra Kemmer-Brueck, Bjoern-Philipp Kloke, Burkhard Otte, Anna Paruzynski, Sebastian Petri, Doreen Schwarck-Kokarakis, Marcus Schmidt, Fabrice André, Jacques De Greve, Thomas Kuendig, Henrik Lindman, Steve Pascolo, Tobias Sjöblom, Kris Thielemans, Laurence Zitvogel, Oezlem Tuereci, Ugur Sahin. The Mutanome Engineered RNA Immuno-Therapy (MERIT) project. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr CT201. doi:10.1158/1538-7445.AM2015-CT201
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Immunology Research, American Association for Cancer Research (AACR), Vol. 4, No. 11_Supplement ( 2016-11-01), p. A004-A004
    Abstract: Mechanisms of antiviral host defense are important for survival and evolutionarily optimized for high sensitivity and potency. Intending to harvest the multitude of highly specialized and intertwined pathogen immune defense programs for cancer immunotherapy, we simulated a systemic pathogen intrusion into the blood stream by intravenous injection of lipid-formulated, tumor antigen-encoding mRNA nanoparticles. These RNA-lipoplexes (RNA-LPX) were directed to various lymphoid tissues, including the spleen, lymph nodes and bone marrow, which provide the ideal microenvironment for efficient priming and amplification of T cell responses. Solely the RNA-to-lipid ratio was discovered to determine the biodistribution of RNA-LPX, irrespective of the types of lipids used, and a slightly negative particle net charge was able to specifically transfect lymphoid-resident antigen presenting cells (APCs). Following uptake by CD11c+ DCs, pDCs and macrophages in the marginal zone of the spleen and in other lymphoid organs, predominantly by macropinocytosis, RNA recognition via TLR7 triggered two transient waves of type I IFN production by pDCs (early response) and macrophages (delayed response), which established an inflammatory, lymphocyte-activating milieu reminiscent of that initiated during the early systemic phase of viral infection. These IFNα receptor (IFNAR)-dependent immune mechanisms were required for DCs to mature, migrate into the T cell zones and express RNA-encoded tumor antigens. Presentation on MHC class I and II in the context of upregulated CD40, CD69 and CD86 elicited strong effector and memory CD8 and CD4 T cell immunity against viral, mutant neo-antigens or self-antigens, which was able to reject progressive tumors in therapeutic mouse models of melanoma, colon carcinoma and human papilloma virus (HPV)-associated cancer. In an ongoing phase I dose escalation study, the first cohort of three patients with advanced melanoma received RNA-LPX encoding four shared tumor antigens at doses lower than those used in the mouse studies. All patients showed a dose-dependent IFNα- and IP-10-dominated cytokine response, developed de novo CD4 and CD8 T cell responses or enhanced pre-existing immunity against the encoded self-antigens NY-ESO-I, Tyrosinase and MAGE-A3, and have stable disease to date. These results support the preclinically identified mode of action and strong potency of this approach in the clinical setting. Our study presents a novel class of systemically administered nanoparticulate RNA vaccines acting by body-wide delivery of encoded antigens to APCs and simultaneous initiation of a strong type I IFN-driven immunostimulatory program. Precise DC targeting in lymphoid compartments is accomplished using well-known lipid carriers and only by manipulating the net charge of the nanoparticles. RNA-LPX vaccines appear to mimic infectious non-self and thus mobilize both adaptive and innate immune mechanisms, connecting effective cancer immunotherapy with host pathogen-defense mechanisms. The simple but highly versatile design allows vaccine preparation with any type of RNA-encoded antigen and may thus be regarded as a universally applicable, first-in-class vaccine platform for cancer immunotherapy. Citation Format: Lena M. Kranz, Mustafa Diken, Heinrich Haas, Sebastian Kreiter, Carmen Loquai, Kerstin C. Reuter, Martin Meng, Daniel Fritz, Fulvia Vascotto, Hossam Hefesha, Christian Grunwitz, Mathias Vormehr, Yves Hüsemann, Abderraouf Selmi, Andreas N. Kuhn, Janina Buck, Evelyna Derhovanessian, Richard Rae, Sebastian Attig, Jan Diekmann, Robert A. Jabulowsky, Sandra Heesch, Jessica Hassel, Peter Langguth, Stephan Grabbe, Christoph Huber, Özlem Türeci, Ugur Sahin. Systemic RNA vaccines: Connecting effective cancer immunotherapy with antiviral defense mechanisms [abstract]. In: Proceedings of the Second CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; 2016 Sept 25-28; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2016;4(11 Suppl):Abstract nr A004.
    Type of Medium: Online Resource
    ISSN: 2326-6066 , 2326-6074
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2732517-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Wiley ; 2015
    In:  Chemistry - A European Journal Vol. 21, No. 44 ( 2015-10-26), p. 15759-15768
    In: Chemistry - A European Journal, Wiley, Vol. 21, No. 44 ( 2015-10-26), p. 15759-15768
    Type of Medium: Online Resource
    ISSN: 0947-6539
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 1478547-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Chemical Society (ACS) ; 2019
    In:  Journal of the American Chemical Society Vol. 141, No. 34 ( 2019-08-28), p. 13643-13653
    In: Journal of the American Chemical Society, American Chemical Society (ACS), Vol. 141, No. 34 ( 2019-08-28), p. 13643-13653
    Type of Medium: Online Resource
    ISSN: 0002-7863 , 1520-5126
    RVK:
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2019
    detail.hit.zdb_id: 1472210-0
    detail.hit.zdb_id: 3155-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Nature, Springer Science and Business Media LLC, Vol. 534, No. 7607 ( 2016-6), p. 396-401
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Molecules Vol. 25, No. 22 ( 2020-11-10), p. 5242-
    In: Molecules, MDPI AG, Vol. 25, No. 22 ( 2020-11-10), p. 5242-
    Abstract: The psoralens 8-methoxypsoralen (8-MOP), 4,5′,8-trimethylpsoralen (TMP) and 5-methoxypsoralen (5-MOP) find clinical application in PUVA (psoralen + UVA) therapy. PUVA treats skin diseases like psoriasis and atopic eczema. Psoralens target the DNA of cells. Upon photo-excitation psoralens bind to the DNA base thymine. This photo-binding was studied using steady-state UV/Vis and IR spectroscopy as well as nanosecond transient UV/Vis absorption. The experiments show that the photo-addition of 8-MOP and TMP involve the psoralen triplet state and a biradical intermediate. 5-MOP forms a structurally different photo-product. Its formation could not be traced by the present spectroscopic technique.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2008644-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 14_Supplement ( 2016-07-15), p. CT020-CT020
    Abstract: The majority of metastatic cancers remain incurable since the current methods of treatment often fail to target the heterogeneous nature of each individual patient's tumor. Personalized approaches targeting each individual patient's tumor may therefore bring significant improvements. The Mutanome Engineered RNA Immuno-Therapy (MERIT) consortium will clinically validate a pioneering RNA-based immunotherapy concept for the treatment of triple negative breast cancer (TNBC) by targeting shared tumor antigens and individual neo-antigens in TNBC patients. MERIT combines two personalized treatment concepts: (i) treatment with vaccines containing “off-the-shelf” mRNAs selected from a pre-synthesized mRNA vaccine warehouse (MERIT WAREHOUSE) that encode shared breast cancer tumor antigens expressed in the respective patient's tumor; (ii) treatment with mRNAs engineered on-demand that encode patient-specific mutated neo-antigens identified by next generation sequencing (NGS) and ranked according to the predicted immunogenicity (MERIT MUTANOME). The mRNAs are administered intravenously as a nanoparticulate lipoplex formulation, which specifically targets APCs and consequently induces antigen-specific T cell responses. MERIT is a multi-center phase I trial (NCT02316457) conducted in four European countries to assess the feasibility, safety and biological efficacy of this personalized immunotherapy. TNBC patients (pT1cN0M0 - anyTanyNM0) after surgery and adjuvant chemotherapy will be allocated to one of two study arms. Patients in ARM1 will receive eight vaccination cycles with a personalized set of shared tumor antigens selected from the WAREHOUSE that correspond to the patient tumor's antigen-expression profile. Patients in ARM2 will be first treated with the personalized WAREHOUSE vaccine approach followed by six vaccination cycles of on-demand manufactured MUTANOME vaccine targeting the unique mutation signature of the individual patient. During the clinical trial, patients will receive the individualized combination of the RNAs in parallel to standard radiotherapy. The clinical trial is approved and the study start is planned for Q1 2016. The consortium has built a multi-disciplinary clinical workflow and trial design tailored to this unique therapeutic concept, which covers the whole individualized drug development cycle from target discovery, validation to GMP manufacturing and drug release for each individual patient. We will present the therapeutic concept and study protocol as well as the methodologies required for this highly innovative phase I trial. The personalized immunotherapy overcomes the current limitations of fixed, off-the-shelf therapeutics and thus might increase the clinical benefit for TNBC patients. This project is a collaborative effort of five partners from academia and industry funded by the European Commission's FP7 and led by BioNTech AG. Citation Format: Sandra Heesch, Valesca Bukur, Janina Buck, Jan Diekmann, Mustafa Diken, Kerstin Ewen, Heinrich Haas, Alexandra Kemmer-Brueck, Björn-Philipp Kloke, Sebastian Kreiter, Andreas N. Kuhn, Klaus Kuehlcke, Martin Loewer, Anna Paruzynski, Kathrin Schultheiß, Doreen Schwarck, Marcus Schmidt, Fabrice André, Jacques De Greve, Thomas Kuendig, Henrik Lindman, Steve Pascolo, Tobias Sjöblom, Kris Thielemans, Laurence Zitvogel, Özlem Türeci, Ugur Sahin. MERIT: introducing individualized cancer vaccines for the treatment of TNBC - a phase I trial. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr CT020.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. CT034-CT034
    Abstract: Therapeutic vaccination with tumor antigen-encoding RNAs by local administration is currently being successfully employed in various clinical trials. Advancing from local to more efficient systemic targeting of antigen-presenting cells (APCs), we have developed pioneering RNA-lipoplex (RNA(LIP)) immunotherapeutics for intravenous application based on the employment of well-known lipid carriers without the need for functionalization of particles with molecular ligands. The novel RNA(LIP) formulation has been engineered to preserve RNA integrity after intravenous injection and physicochemically optimized for efficient uptake and expression of the encoded antigen by APCs in various lymphoid compartments, resulting in the synchronized induction of both potent adaptive as well as type-I-IFN-mediated innate immune responses. The first-in-human phase I/II dose escalation Lipo-MERIT trial (NCT02410733) assesses the safety, tolerability, and biological efficacy of the innovative RNA(LIP) immunotherapy in four study centers in Germany. This is the first example of a clinically applicable and systemic RNA-based cancer vaccine. Following selective antigen stratification on routinely collected tumor samples, eligible patients with malignant melanoma are treated with increasing doses of the tetravalent Lipo-MERIT vaccine - a fixed set of four RNA(LIP) products, each encoding one shared melanoma-associated antigen, i.e. NY-ESO-1, tyrosinase, MAGE-A3, and TPTE, that are administered successively within one treatment cycle. Accompanying correlative biomarker studies and concerted immunological assessments evaluate the pharmacodynamic activity and immunogenicity upon multiple vaccination cycles with the Lipo-MERIT vaccine. As of January 2017, 15 patients have been treated within five dose escalation cohorts thoroughly guided by an independent data safety and monitoring board. Multiple dosing with the Lipo-MERIT vaccine was generally well-tolerated and no dose-limiting toxicities (DLTs) were observed so far. Further patient enrollment is continuing. Detailed information on the ongoing trial, the recruitment and treatment status as well as preliminary data on the assessment of vaccine-induced immune responses from the first patients treated will be presented. Citation Format: Robert A. Jabulowsky, Carmen Loquai, Jochen Utikal, Jessica Hassel, Roland Kaufmann, Evelyna Derhovanessian, Mustafa Diken, Lena M. Kranz, Heinrich Haas, Sebastian Attig, Christine Anft, Janina Buck, Jan Diekmann, Daniel Fritz, Kerstin Hartmann, Alexandra Kemmer-Brueck, Klaus Kuehlcke, Andreas N. Kuhn, Peter Langguth, Ulrich Luxemburger, Martin Meng, Richard Rae, Fatih Sari, Doreen Schwarck-Kokarakis, Malte Stein, Stephan Grabbe, Sebastian Kreiter, Oezlem Tuereci, Christoph Huber, Ugur Sahin. A first-in-human phase I/II clinical trial assessing novel mRNA-lipoplex nanoparticles for potent melanoma immunotherapy [abstract] . In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr CT034. doi:10.1158/1538-7445.AM2017-CT034
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages