Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Hematological Malignancies, Sciedu Press, Vol. 3, No. 2 ( 2013-08-15)
    Type of Medium: Online Resource
    ISSN: 1925-4032 , 1925-4024
    Language: Unknown
    Publisher: Sciedu Press
    Publication Date: 2013
    detail.hit.zdb_id: 2648997-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 12, No. 6 ( 2013-06-01), p. 1140-1150
    Abstract: Multiple myeloma is a hematologic malignancy characterized by the proliferation of neoplastic plasma cells in the bone marrow. Although the first-to-market proteasome inhibitor bortezomib (Velcade) has been successfully used to treat patients with myeloma, drug resistance remains an emerging problem. In this study, we identify signatures of bortezomib sensitivity and resistance by gene expression profiling (GEP) using pairs of bortezomib-sensitive (BzS) and bortezomib-resistant (BzR) cell lines created from the Bcl-XL/Myc double-transgenic mouse model of multiple myeloma. Notably, these BzR cell lines show cross-resistance to the next-generation proteasome inhibitors, MLN2238 and carfilzomib (Kyprolis) but not to other antimyeloma drugs. We further characterized the response to bortezomib using the Connectivity Map database, revealing a differential response between these cell lines to histone deacetylase (HDAC) inhibitors. Furthermore, in vivo experiments using the HDAC inhibitor panobinostat confirmed that the predicted responder showed increased sensitivity to HDAC inhibitors in the BzR line. These findings show that GEP may be used to document bortezomib resistance in myeloma cells and predict individual sensitivity to other drug classes. Finally, these data reveal complex heterogeneity within multiple myeloma and suggest that resistance to one drug class reprograms resistant clones for increased sensitivity to a distinct class of drugs. This study represents an important next step in translating pharmacogenomic profiling and may be useful for understanding personalized pharmacotherapy for patients with multiple myeloma. Mol Cancer Ther; 12(6); 1140–50. ©2013 AACR.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Cell Cycle, Informa UK Limited, Vol. 10, No. 14 ( 2011-07-15), p. 2331-2338
    Type of Medium: Online Resource
    ISSN: 1538-4101 , 1551-4005
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2011
    detail.hit.zdb_id: 2102687-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Oncotarget, Impact Journals, LLC, Vol. 8, No. 22 ( 2017-05-30), p. 35863-35876
    Type of Medium: Online Resource
    ISSN: 1949-2553
    URL: Issue
    Language: English
    Publisher: Impact Journals, LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2560162-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society of Hematology ; 2015
    In:  Blood Vol. 126, No. 23 ( 2015-12-03), p. 1819-1819
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 1819-1819
    Abstract: Proteasome inhibitors (PIs) like bortezomib (Btz) and carfilzomib (Crflz) induce an oxidative stress response in Multiple Myeloma (MM) cells. Oxidative stress is a key effector pathway in PI-induced cell death, and altered redox signaling has been implicated in the acquisition of PI resistance. The potential of redox as a therapeutic target/pathway for PI resistant MM has not been realized due to the absence of a precise molecular targeted strategy that exploits redox signaling in a way that attacks PI resistant cells while sparing normal cells. Therefore, we set out in this study to characterize redox adaptations that contribute to PI resistance in MM, and to use drug screening platforms to identify specific redox-targeted small molecules that restore PI sensitivity. Using multiple isogenic pairs of PI sensitive and resistant MM cell lines, we found that resistant cells exist under high basal levels of reactive oxygen species (ROS) and oxidation of protein thiols (i.e., oxidative damage). Resistant cells induce significantly higher relative levels of ROS following PI treatment, but exhibit no further increase in oxidative damage. By comparison, their PI sensitive counterparts have relatively low levels of basal and PI-induced ROS levels, but undergo significantly higher levels of oxidative damage following PI treatment. These findings demonstrate that PI resistance is associated with alterations in redox balance; they further suggest that PI resistant cells have acquired adaptations that allow them to survive under high basal levels of oxidative stress, and that provide protection from PI-induced oxidative damage. We also identified significant changes in cellular bioenergetics that are typical of PI resistant cells. Generally, PI resistant cells appear to be more metabolically efficient, relying on mitochondrial respiration as their primary source of ATP production. Specifically, PI resistant cells have higher basal oxygen consumption rates (OCR), expanded respiratory capacity, increased NAD(P)H levels and pyruvate dehydrogenase (PDH) activity, and nearly absent activation of the AMP kinase energy stress signaling pathway. Thus, the acquisition of PI resistance is associated with significant changes in redox balance as well as in cellular bioenergetics. Given these findings, we next used a cell-based drug screening method to screen for redox-targeted small molecules capable of restoring PI sensitivity to resistant cells. We screened a compound collection of known pro- and anti-oxidant small molecules with wide-ranging mechanisms of action. From this screen we identified compound E61, which demonstrated strong synergy with multiple PIs, including Btz, Crflz, ixazomib, and oprozomib. E61 induced an oxidative stress response characterized by a burst of ROS generation and oxidation of protein thiols, and synergistically enhanced the PI-induced oxidative stress response in resistant cells. The synergistic cytotoxic response to E61 and PI co-treatment was dependent on ROS, and was evident across several models of PI resistance, representing cells of diverse genetic backgrounds. While E61 enhanced PI-induced cell death in resistant MM cells, its effects were protective in normal cell types, including peripheral blood mononuclear cells (PMBCs) and lymphocytes from normal human donors. These findings suggest that compound E61 will have a wide therapeutic index in combination with PI therapy in preclinical mouse models of MM, a hypothesis that we are currently testing. All together, our findings identify specific redox and bioenergetics changes that are acquired by PI resistant MM cells. Furthermore, our work offers a novel redox-targeted small molecule, E61, to be used in combination with PI-based therapeutic regimens in refractory MM. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 1344-1344
    Abstract: Abstract 1344 Bortezomib/VELCADE® (Bz) is a proteasome inhibitor that has been used successfully in the treatment of multiple myeloma (MM) patients. However, acquired resistance to Bz is an emerging problem. Thus, there is a need for novel therapeutic combinations that enhance Bz sensitivity or re-sensitize Bz resistant MM cells to Bz. The Connectivity Map (CMAP; Broad Institute) database contains treatment-induced transcriptional signatures from 1,309 bioactive compounds in 4 human cancer cell lines. An input signature can be used to query the database for correlated drug signatures, a technique that has been used previously to identify drugs that combat chemoresistance in cancer (Wei, et al. Cancer Cell (2006) 10:331). In this study we used in silico bioinformatic screening of gene expression profiles from isogenic pairs of Bz sensitive and resistant mouse cell lines derived from the iMycCα/Bcl-xL mouse model of plasma cell malignancy to identify compounds that combat Bz resistance. We established Bz-induced kinetic gene expression profiles (GEPs) in 3 pairs of Bz sensitive and resistant mouse cell lines over the course of 24 hours. GEPs were collected in the absence of large-scale cell death. The 16 and 24 hour time points were averaged and compared between each Bz sensitive and resistant pair. Genes in the sensitive cell line with a fold change greater than 2, relative to the resistant line, were given the binary distinction of “up” or “down” depending on the direction of change. Genes that met these criteria were assembled into signatures, and then used as inputs for CMAP queries to identify compounds that induce similar transcriptional responses. In all pairs, treatment of the Bz sensitive line correlated with GEPs of drugs that target the proteasome, NF-κB, HSP90 and microtubules, as indicated by positive connectivity scores. However eight compounds, all classified as Topoisomerase (Topo) I and/or II inhibitors, were negatively correlated to our input signature. A negative connectivity score could have two interpretations: (1) this could indicate simply that Topos are upregulated by Bz treatment in Bz sensitive lines, which has been previously reported (Congdan, et al. Biochem. Pharmacol. (2008) 74: 883); or (2) this score could be interpreted as Topos are inhibited in Bz resistant cells upon Bz treatment. This led us to ask whether Topo inhibitors could target Bz resistant MM cells and re-sensitize them to Bz. Indeed, we found that multiple Topo inhibitors were significantly more active against Bz resistant cells as single agents and restored sensitivity to Bz when combined with Bz as a cocktail regimen. This work demonstrates the potential of this in silico bioinformatic approach for identifying novel therapeutic combinations that overcome Bz resistance in MM. Furthermore, it identifies Topo inhibitors – drugs that are already approved for clinical use – as agents that may have utility in combating Bz resistance in refractory MM patients. Disclosures: Stessman: Millennium: The Takeda Oncology Company: Research Funding. Van Ness:Millennium: The Takeda Oncology Company: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 1139-1139
    Abstract: Proteasome inhibitors (PIs) are cornerstone agents in the treatment of Multiple Myeloma (MM). Although initially effective, resistance to PIs inevitably emerges, presenting an obstacle to sustained and durable treatment responses in the clinic. To address this limitation, we set out to discover new small molecules that are able to restore PI sensitivity in resistant MM cells. We screened multiple chemical libraries using a cell-based screening method that identifies synergistic combinations with the PI bortezomib (Btz). This method uncovered compound E61 that, in subsequent rounds of screening, demonstrated potent PI re-sensitizing activity. E61 synergistically enhanced the activity of multiple PIs, including Btz, carfilzomib, ixazomib, and oprozomib by 3-15 fold in a genetically diverse panel of PI sensitive and resistant MM cells. In addition, E61 exhibited strong anti-MM activity as a single agent after extended treatment times (48 hours) and demonstrated 〉 10-fold selectivity for MM cell lines over normal peripheral blood mononuclear cells (PBMCs), normal lymphocytes, and a panel of normal fibroblast cell lines. Importantly, the PI sensitizing activity of E61 was also limited to MM cells, as the drug failed to enhance the activity of PIs in normal cells. For a hit stage molecule, E61 showed exceptional tolerability and activity in vivo, significantly improving animal survival and reducing the number of CD138+ MM plasma cells in the bone marrow of mice. We used a xenotransplant model where NOD-SCID IL2Rgamma-/- (NSG) mice were injected via the lateral tail vein with PI resistant MM cells. Using this model, mice reliably reached the survival endpoint between weeks six and seven, with death being caused by the infiltration of mouse bone marrow by MM plasma cells and the development of bone lesions that closely resemble the human MM pathology. Continuous dosing with E61 (50 mg/kg, i.p., daily) was able to cure 38% of mice, with surviving mice showing only minimal residual disease (i.e., 1.0-1.5% CD138+ MM cells in the bone marrow) at the termination of the experiment. The molecular effects of E61 which lead to its anti-MM activity are characterized primarily by oxidative and endoplasmic stress responses. E61 induces reactive oxygen species (ROS) formation and oxidative damage to proteins, effects that are synergistically potentiated by the addition of PIs. This oxidative burst is critical to the anti-MM activity of E61, as the neutralizing of ROS with various molecular scavengers blocks the pro-apoptotic effects of E61. E61 triggers a robust induction of canonical ER stress markers including phospho-eIF2a, ATF4, XBP-1s, and CHOP. In order to identify the direct molecular target of E61, we chemically modified the molecule to enable copper-catalyzed azide-alkyne click chemistry coupling to fluorescent dyes and immobilizing agents. This strategy was used in tandem with peptide mass fingerprinting, which identified a small set of E61 protein binding partners that are principally involved in the proper folding of nascent polypeptide chains. Additionally, we have synthesized a small library of derivatives which retain the PI re-sensitization phenotype, that have increased metabolic stability against human liver microsomes by at least 5-fold. Ongoing efforts by our group are aimed at further validating and confirming this mechanism of action of E61 as well as further optimizing the chemical structure of E61 for enhanced potency and pharmaceutical properties toward the goal of clinical development. Overall, this work demonstrates the potential of developmental compound E61, a new class of small molecule with an apparent novel mechanism of action, as a new drug candidate for the treatment of refractory MM. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Society of Hematology ; 2016
    In:  Blood Vol. 128, No. 22 ( 2016-12-02), p. 3294-3294
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 3294-3294
    Abstract: Multiple myeloma (MM) remains largely incurable due to the emergence of therapeutic resistance. We therefore set out in this study to identify druggable molecular mechanisms that convey resistance to proteasome inhibitors (PIs; e.g., bortezomib/VELCADE, carfilzomib/KYPROLIS), which are cornerstone agents in the treatment of MM. In comparing isogenic pairs of PI sensitive and resistant cells, we observed stark differences in cellular bioenergetics between the divergent phenotypes. While glycolysis rates between cell lines were similar, PI resistant cells exhibited increased mitochondrial respiration characterized by higher basal oxygen consumption rates (OCR) and overall respiratory capacity. Additionally, PI resistant cells were found to have lower activation of the AMP kinase (AMPK) energy stress pathway and increased levels of NAD(P)H, which serve as electron carriers in the mitochondrial process of oxidative phosphorylation. We determined that glutamine was the principle source of fuel driving mitochondrial respiration as removal of glutamine completely inhibited OCR as well as cell proliferation, whereas glucose and pyruvate were dispensable. Given the propensity for mitochondrial respiration in PI resistant cells and the dependence on glutamine for this process, we hypothesized that targeting glutamine utilization by PI resistant cells would restore their sensitivity to the cytotoxic effects of PIs. To test this possibility, we inhibited glutamine metabolism using the small molecule GLS1 inhibitor CB-839. CB-839 repressed basal OCR and total respiratory capacity and reduced cell viability to varying degrees in a panel of PI sensitive and resistant MM cell lines. Most notably, we found that CB-839 synergistically enhanced the cytotoxic activity of multiple PIs, including bortezomib, carfilzomib, ixazomib, and oprozomib, in a genetically diverse panel of 15 PI sensitive and resistant MM cell lines. The effects of CB-839 were the most apparent in combination with carfilzomib (Crflz), where it enhanced Crflz-induced death by 〉 4-fold. CB-839 enhanced Crflz-induced apoptosis as measured by the activation of caspase 3, 7, 8 and the cleavage of the caspase-3 substrate PARP. Mechanistically, the combination of CB-839 and Crflz induces a strong and synergistic ER stress response, characterized by the induction of ATF4 and CHOP. Our findings suggest that the acquisition of PI resistance may involve adaptations in cellular bioenergetics that may be exploited therapeutically by targeting glutamine metabolism. Furthermore, our results support the combination of clinical stage compound CB-839 with PIs, particularly Crflz, for the treatment of refractory MM. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Society of Clinical Oncology (ASCO) ; 2014
    In:  Journal of Clinical Oncology Vol. 32, No. 15_suppl ( 2014-05-20), p. e19591-e19591
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 32, No. 15_suppl ( 2014-05-20), p. e19591-e19591
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2014
    detail.hit.zdb_id: 2005181-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2018
    In:  Journal of Clinical and Translational Science Vol. 2, No. S1 ( 2018-06), p. 10-10
    In: Journal of Clinical and Translational Science, Cambridge University Press (CUP), Vol. 2, No. S1 ( 2018-06), p. 10-10
    Abstract: OBJECTIVES/SPECIFIC AIMS: Immuno-oncology (IO) strategies are promising new approaches for the treatment of a variety of malignancies, including multiple myeloma (MM). Regulatory T cells (Tregs), which suppress effector T cell function, are a limitation to durable IO responses. The transcription factor FOXP3 is critical for the mature Treg phenotype. FOXP3 homodimerization is required for DNA binding and transcriptional activity, and mutations mapping to the dimerization region are associated with IPEX syndrome, resulting in dysfunctional Tregs in humans. We therefore hypothesize that inhibitors of FOXP3 dimerization will repress Treg suppression and enhance the anti-MM activity of IO. METHODS/STUDY POPULATION: To discover FOXP3 dimerization inhibitors, we are modeling FOXP3 homodimerization in vitro. Currently, we are optimizing an ALPHA screen and an ELISA-based dimerization assay using recombinant full length and truncated versions of FOXP3 to discover peptidomimetics that inhibit homodimerization. Induced Tregs expanded from human PBMCs will be treated with lead biologics and functional assays will be performed. RESULTS/ANTICIPATED RESULTS: Here we demonstrate Treg suppression of T cell proliferation and IFN-γ secretion after 5 days of co-culture under basal conditions. Additionally, we developed a MM/T cell co-culture system to measure anti-MM T cell responses and show decreased anti-MM T cell activity in the presence of Tregs. We expect to exploit the assays outlined here to demonstrate defective Treg suppression when FOXP3 dimerization is inhibited. DISCUSSION/SIGNIFICANCE OF IMPACT: These studies support drug discovery efforts that will ultimately improve IO therapies for patients with MM.
    Type of Medium: Online Resource
    ISSN: 2059-8661
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2018
    detail.hit.zdb_id: 2898186-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages