In:
Environmental Chemistry, CSIRO Publishing, Vol. 16, No. 6 ( 2019), p. 459-
Abstract:
Environmental contextZinc, an essential micronutrient often applied to crops as a fertiliser, can be difficult to analyse in plants due to limitations of conventional techniques. Here, we use radiotracers and a non-destructive imaging technique to visualise how zinc applied as a nanofertiliser moves within wheat plants over time. This is an important step towards developing cost-effective fertilisers to help solve one of the world’s most widespread plant deficiencies. AbstractZinc (Zn) deficiency affects half of the world’s arable soil and one-third of the world’s human population. Application of Zn foliar fertilisers to cereal crops can be an effective way to increase grain Zn content; however, commonly used formulations can scorch the leaf (e.g. soluble Zn salts) or are prohibitively expensive (e.g. chelated Zn, ZnEDTA). Zinc oxide nanoparticles (ZnO-NPs) may offer an efficient and cost-effective alternative, but little is known regarding the mechanisms of Zn uptake and translocation within the plant. Foliar-applied Zn is analytically challenging to detect, locate and quantify, as it is omnipresent. Furthermore, any single analytical technique does not have the detection limit or spatial resolution required. In this study, the uptake and mobility of foliar-applied ZnEDTA, ZnO-NPs and ZnO microparticles (ZnO-MPs) to wheat (Triticum aestivum L.) were investigated using inductively coupled plasma mass spectroscopy (ICP-MS), synchrotron-based X-ray fluorescence microscopy (XFM) and radiotracing techniques using 65Zn-labelled formulations. The three techniques were compared to highlight limitations and advantages of each. We also report, for the first time, a novel time-resolved invivo autoradiography imaging technique that can be used to visualise 65Zn in live plants treated with foliar applications of 65ZnO-NPs and MPs. The images were supplemented by gamma spectroscopy analysis for quantification. The results of this study provide important insights into the analytical challenges faced when investigating foliar-applied Zn nanofertilisers in plants. Potential solutions using nuclear techniques are also discussed, which in turn may ultimately lead to the development of more efficient foliar fertilisers.
Type of Medium:
Online Resource
ISSN:
1448-2517
Language:
English
Publisher:
CSIRO Publishing
Publication Date:
2019
detail.hit.zdb_id:
2150372-2
Bookmarklink