Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 375, No. 6580 ( 2022-02-04), p. 540-545
    Abstract: A cluster of HIV-infected individuals with high viral loads, rapid CD4 + cell declines, and increased infectivity has been detected in Europe.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 489, No. 1 ( 2019-10-11), p. 241-267
    Abstract: The Southern Photometric Local Universe Survey (S-PLUS) is imaging ∼9300 deg2 of the celestial sphere in 12 optical bands using a dedicated 0.8 m robotic telescope, the T80-South, at the Cerro Tololo Inter-american Observatory, Chile. The telescope is equipped with a 9.2k × 9.2k e2v detector with 10 $\rm {\mu m}$ pixels, resulting in a field of view of 2 deg2 with a plate scale of 0.55 arcsec pixel−1. The survey consists of four main subfields, which include two non-contiguous fields at high Galactic latitudes (|b| & gt; 30°, 8000 deg2) and two areas of the Galactic Disc and Bulge (for an additional 1300 deg2). S-PLUS uses the Javalambre 12-band magnitude system, which includes the 5 ugriz broad-band filters and 7 narrow-band filters centred on prominent stellar spectral features: the Balmer jump/[OII], Ca H + K, H δ, G band, Mg b triplet, H α, and the Ca triplet. S-PLUS delivers accurate photometric redshifts (δz/(1 + z) = 0.02 or better) for galaxies with r & lt; 19.7 AB mag and z & lt; 0.4, thus producing a 3D map of the local Universe over a volume of more than $1\, (\mathrm{Gpc}/h)^3$. The final S-PLUS catalogue will also enable the study of star formation and stellar populations in and around the Milky Way and nearby galaxies, as well as searches for quasars, variable sources, and low-metallicity stars. In this paper we introduce the main characteristics of the survey, illustrated with science verification data highlighting the unique capabilities of S-PLUS. We also present the first public data release of ∼336 deg2 of the Stripe 82 area, in 12 bands, to a limiting magnitude of r = 21, available at datalab.noao.edu/splus.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 653 ( 2021-09), p. A31-
    Abstract: The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) will scan thousands of square degrees of the northern sky with a unique set of 56 filters using the dedicated 2.55 m Javalambre Survey Telescope (JST) at the Javalambre Astrophysical Observatory. Prior to the installation of the main camera (4.2 deg 2 field-of-view with 1.2 Gpixels), the JST was equipped with the JPAS-Pathfinder, a one CCD camera with a 0.3 deg 2 field-of-view and plate scale of 0.23 arcsec pixel −1 . To demonstrate the scientific potential of J-PAS, the JPAS-Pathfinder camera was used to perform miniJPAS, a ∼1 deg 2 survey of the AEGIS field (along the Extended Groth Strip). The field was observed with the 56 J-PAS filters, which include 54 narrow band ( FWHM  ∼ 145 Å) and two broader filters extending to the UV and the near-infrared, complemented by the u ,  g ,  r ,  i SDSS broad band filters. In this miniJPAS survey overview paper, we present the miniJPAS data set (images and catalogs), as we highlight key aspects and applications of these unique spectro-photometric data and describe how to access the public data products. The data parameters reach depths of mag AB  ≃ 22−23.5 in the 54 narrow band filters and up to 24 in the broader filters (5 σ in a 3″ aperture). The miniJPAS primary catalog contains more than 64 000 sources detected in the r band and with matched photometry in all other bands. This catalog is 99% complete at r  = 23.6 ( r  = 22.7) mag for point-like (extended) sources. We show that our photometric redshifts have an accuracy better than 1% for all sources up to r  = 22.5, and a precision of ≤0.3% for a subset consisting of about half of the sample. On this basis, we outline several scientific applications of our data, including the study of spatially-resolved stellar populations of nearby galaxies, the analysis of the large scale structure up to z  ∼ 0.9, and the detection of large numbers of clusters and groups. Sub-percent redshift precision can also be reached for quasars, allowing for the study of the large-scale structure to be pushed to z   〉  2. The miniJPAS survey demonstrates the capability of the J-PAS filter system to accurately characterize a broad variety of sources and paves the way for the upcoming arrival of J-PAS, which will multiply this data by three orders of magnitude.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 622 ( 2019-02), p. A176-
    Abstract: The Javalambre Photometric Local Universe Survey (J-PLUS ) is an ongoing 12-band photometric optical survey, observing thousands of square degrees of the Northern Hemisphere from the dedicated JAST/T80 telescope at the Observatorio Astrofísico de Javalambre (OAJ). The T80Cam is a camera with a field of view of 2 deg 2 mounted on a telescope with a diameter of 83 cm, and is equipped with a unique system of filters spanning the entire optical range (3500–10 000 Å). This filter system is a combination of broad-, medium-, and narrow-band filters, optimally designed to extract the rest-frame spectral features (the 3700–4000 Å Balmer break region, H δ , Ca H+K, the G band, and the Mg b and Ca triplets) that are key to characterizing stellar types and delivering a low-resolution photospectrum for each pixel of the observed sky. With a typical depth of AB ∼21.25 mag per band, this filter set thus allows for an unbiased and accurate characterization of the stellar population in our Galaxy, it provides an unprecedented 2D photospectral information for all resolved galaxies in the local Universe, as well as accurate photo- z estimates (at the δ   z /(1 +  z )∼0.005–0.03 precision level) for moderately bright (up to r  ∼ 20 mag) extragalactic sources. While some narrow-band filters are designed for the study of particular emission features ([O  II ]/ λ 3727, H α / λ 6563) up to z   〈  0.017, they also provide well-defined windows for the analysis of other emission lines at higher redshifts. As a result, J-PLUS has the potential to contribute to a wide range of fields in Astrophysics, both in the nearby Universe (Milky Way structure, globular clusters, 2D IFU-like studies, stellar populations of nearby and moderate-redshift galaxies, clusters of galaxies) and at high redshifts (emission-line galaxies at z  ≈ 0.77, 2.2, and 4.4, quasi-stellar objects, etc.). With this paper, we release the first ∼1000 deg 2 of J-PLUS data, containing about 4.3 million stars and 3.0 million galaxies at r   〈  21 mag. With a goal of 8500 deg 2 for the total J-PLUS footprint, these numbers are expected to rise to about 35 million stars and 24 million galaxies by the end of the survey.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 649 ( 2021-05), p. A79-
    Abstract: The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) will soon start imaging thousands of square degrees of the northern sky with its unique set of 56 filters (spectral resolution of R  ∼ 60). Before the arrival of the final instrument, we observed 1 deg 2 on the AEGIS field with an interim camera with all the J-PAS filters. Taking advantage of these data, dubbed miniJPAS, we aim at proving the scientific potential of the J-PAS to derive the stellar population properties of galaxies via fitting codes for spectral energy distributions (SEDs), with the ultimate goal of performing galaxy evolution studies across cosmic time. One parametric ( BaySeAGal ) and three non-parametric ( MUFFIT , AlStar , and TGASPEX ) SED-fitting codes are used to constrain the stellar mass, age, metallicity, extinction, and rest-frame and dust-corrected ( u  −  r ) colours of a complete flux-limited sample ( r SDSS ≤ 22.5 AB) of miniJPAS galaxies that extends up to z  = 1. We generally find consistent results on the galaxy properties derived from the different codes, independently of the galaxy spectral type or redshift; this is remarkable considering that 25% of the J-spectra have signal-to-noise ratios (S/N) ∼3. For galaxies with S / N ≥ 10, we estimate that the J-PAS photometric system will allow us to derive the stellar population properties of rest-frame ( u  −  r ) colour, stellar mass, extinction, and mass-weighted age with a precision of 0.04 ± 0.02 mag, 0.07 ± 0.03 dex, 0.2 ± 0.09 mag, and 0.16 ± 0.07 dex, respectively. This precision is equivalent to that obtained with spectroscopic surveys of similar S/N. By using the dust-corrected ( u  −  r ) colour–mass diagram, a powerful proxy for characterizing galaxy populations, we find: (i) that the fraction of red and blue galaxies evolves with cosmic time, with red galaxies being ∼38% and ∼18% of the whole population at z  = 0.1 and z  = 0.5, respectively, and (ii) consistent results between codes for the average intrinsic ( u  −  r ) colour, stellar mass, age, and stellar metallicity of blue and red galaxies and their evolution up to z  = 1. At all redshifts, the more massive galaxies belong to the red sequence, and these galaxies are typically older and more metal-rich than their counterparts in the blue cloud. Our results confirm that with J-PAS data we will be able to analyse large samples of galaxies up to z  ∼ 1, with galaxy stellar masses above log( M ⋆ / M ⊙ )∼8.9, 9.5, and 9.9 at z  = 0.3, 0.5, and 0.7, respectively. The star formation history of a complete sub-sample of galaxies selected at z  ∼ 0.1 with log( M ⋆ / M ⊙ ) 〉 8.3 constrains the cosmic evolution of the star formation rate density up to z  ∼ 3, in good agreement with results from cosmological surveys.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 666 ( 2022-10), p. A160-
    Abstract: The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) is a photometric survey that is poised to scan several thousands of square degrees of the sky. It will use 54 narrow-band filters, combining the benefits of low-resolution spectra and photometry. Its offshoot, miniJPAS, is a 1 deg 2 survey that uses J-PAS filter system with the Pathfinder camera. In this work, we study mJPC2470-1771, the most massive cluster detected in miniJPAS. We survey the stellar population properties of the members, their star formation rates (SFR), star formation histories (SFH), the emission line galaxy (ELG) population, spatial distribution of these properties, and the ensuing effects of the environment. This work shows the power of J-PAS to study the role of environment in galaxy evolution. We used a spectral energy distribution (SED) fitting code to derive the stellar population properties of the galaxy members: stellar mass, extinction, metallicity, ( u  −  r ) res and ( u  −  r ) int colours, mass-weighted age, the SFH that is parametrised by a delayed- τ model ( τ , t 0 ), and SFRs. We used artificial neural networks for the identification of the ELG population via the detection of the H α , [NII], H β , and [OIII] nebular emission. We used the Ew(H α )-[NII] (WHAN) and [OIII] /H α -[NII]/H α (BPT) diagrams to separate them into individual star-forming galaxies and AGNs. We find that the fraction of red galaxies increases with the cluster-centric radius; and at 0.5 R 200 the red and blue fractions are both equal. The redder, more metallic, and more massive galaxies tend to be inside the central part of the cluster, whereas blue, less metallic, and less massive galaxies are mainly located outside of the inner 0.5 R 200 . We selected 49 ELG, with 65.3% of them likely to be star-forming galaxies, dominated by blue galaxies, and 24% likely to have an AGN (Seyfert or LINER galaxies). The rest are difficult to classify and are most likely composite galaxies. These latter galaxies are red, and their abundance decreases with the cluster-centric radius; in contrast, the fraction of star-forming galaxies increases outwards up to R 200 . Our results are compatible with an scenario in which galaxy members were formed roughly at the same epoch, but blue galaxies have had more recent star formation episodes, and they are quenching out from within the cluster centre. The spatial distribution of red galaxies and their properties suggest that they were quenched prior to the cluster accretion or an earlier cluster accretion epoch. AGN feedback or mass might also stand as an obstacle in the quenching of these galaxies.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 666 ( 2022-10), p. A84-
    Abstract: The miniJPAS survey has observed ∼1 deg 2 of the AEGIS field with 60 bands (spectral resolution of R  ∼ 60) in order to demonstrate the scientific potential of the Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS), which will map ∼8000 deg 2 of the northern sky over the coming years. In particular, this paper demonstrates the potential of J-PAS in detecting groups with mass of up to 10 13 M ⊙ and in characterising their galaxy populations up to z  ∼ 1. The parametric code BaySeAGal is used to derive the stellar population properties by fitting the J-PAS spectral energy distribution (SED) of the galaxy members in 80 groups at z  ≤ 0.8 previously detected by the AMICO code, and of a galaxy field sample retrieved from the whole miniJPAS down to r   〈  22.75 (AB). Blue, red, quiescent, and transition (blue quiescent or green valley) galaxy populations are identified through their rest-frame (extinction-corrected) ( u  −  r ) int colour, galaxy stellar mass ( M ⋆ ), and specific star formation rate (sSFR). We measure the abundance of these galaxies as a function of M ⋆ and environment in order to investigate the role that groups play in quenching star formation. Our findings are as follows. (i) The fraction of red and quiescent galaxies in groups increases with M ⋆ and is always higher in groups (28% on average) than in the field (5%). (ii) The quenched fraction excess (QFE) in groups shows a strong dependence on M ⋆ , and increases from a few percent for galaxies with M ⋆   〈  10 10 M ⊙ to higher than 60% for galaxies with M ⋆   〉  3 × 10 11 M ⊙ . (iii) The abundance excess of transition galaxies in groups shows a modest dependence on M ⋆ , being 5%–10% for galaxies with M ⋆   〈  10 11 M ⊙ . (iv) The fading timescale, defined as the time that galaxies in groups spend in the transition phase, is very short ( 〈 1.5 Gyr), indicating that the star formation of galaxies in groups declines very rapidly. (v) The evolution of the galaxy quenching rate in groups shows a modest but significant evolution since z  ∼ 0.8. This latter result is compatible with the expected evolution with constant QFE = 0.4, which has been previously measured for satellites in the nearby Universe, as traced by SDSS. Further, this evolution is consistent with a scenario where the low-mass star forming galaxies in clusters at z  = 1–1.4 are environmentally quenched, as previously reported by other surveys.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 622 ( 2019-02), p. A180-
    Abstract: In this paper we aim to validate a methodology designed to obtain H α emission line fluxes from J-PLUS photometric data. J-PLUS is a multi narrow-band filter survey carried out with the 2 deg 2 field of view T80Cam camera, mounted on the JAST/T80 telescope in the OAJ, Teruel, Spain. The information of the twelve J-PLUS bands, including the J 0660 narrow-band filter located at rest-frame H α , is used over the first 42 deg 2 observed to retrieve de-reddened and [NII] decontaminated H α emission line fluxes of 46 star-forming regions with previous SDSS and/or CALIFA spectroscopic information. The agreement between the J-PLUS H α fluxes and those obtained with spectroscopic data is remarkable, finding a median comparison ratio with a scatter of $ \mathcal{R}\,{=}\,F^{\mathrm{J-PLUS}}_{\mathrm{H\alpha}}/F^{\mathrm{spec}}_{\mathrm{H\alpha}}\,{=}\,1.05\,{\pm}\,0.25 $. This demonstrates that it is possible to retrieve reliable H α emission line fluxes from J-PLUS photometric data. With an expected area of thousands of square degrees upon completion, the J-PLUS dataset will allow the study of several star formation science cases in the nearby universe, as the spatially resolved star formation rate of nearby galaxies at z   ≤  0.015, and how it is influenced by the environment, morphology, stellar mass, and nuclear activity. As an illustrative example, the close pair of interacting galaxies NGC 3994 and NGC 3995 is analysed, finding an enhancement of the star formation rate not only in the centre, but also in outer parts of the disk of NGC 3994.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 647 ( 2021-03), p. A158-
    Abstract: In the years to come, the Javalambre-Physics of the Accelerated Universe Astrophysical Survey (J-PAS) will observe 8000 deg 2 of the northern sky with 56 photometric bands. J-PAS is ideal for the detection of nebular emission objects. This paper presents a new method based on artificial neural networks (ANNs) that is aimed at measuring and detecting emission lines in galaxies up to z  = 0.35. These lines are essential diagnostics for understanding the evolution of galaxies through cosmic time. We trained and tested ANNs with synthetic J-PAS photometry from CALIFA, MaNGA, and SDSS spectra. To this aim, we carried out two tasks. First, we clustered galaxies in two groups according to the values of the equivalent width (EW) of H α , H β , [N  II ], and [O  III ] lines measured in the spectra. Then we trained an ANN to assign a group to each galaxy. We were able to classify them with the uncertainties typical of the photometric redshift measurable in J-PAS. Second, we utilized another ANN to determine the values of those EWs. Subsequently, we obtained the [N  II ]/H α , [O  III ]/H β , and O 3N 2 ratios, recovering the BPT diagram ([O  III ]/H β versus [N  II ]/H α ). We studied the performance of the ANN in two training samples: one is only composed of synthetic J-PAS photo-spectra (J-spectra) from MaNGA and CALIFA (CALMa set) and the other one is composed of SDSS galaxies. We were able to fully reproduce the main sequence of star-forming galaxies from the determination of the EWs. With the CALMa training set, we reached a precision of 0.092 and 0.078 dex for the [N  II ]/H α and [O  III ]/H β ratios in the SDSS testing sample. Nevertheless, we find an underestimation of those ratios at high values in galaxies hosting an active galactic nuclei. We also show the importance of the dataset used for both training and testing the model. Such ANNs are extremely useful for overcoming the limitations previously expected concerning the detection and measurements of the emission lines in such surveys as J-PAS. Furthermore, we show the capability of the method to measure a EW of 10 Å in H α , H β , [N  II ] and [O  III ] lines with a signal-to-noise ratio (S/N) of 5, 1.5, 3.5, and 10, respectively, in the photometry. Finally, we compare the properties of emission lines in galaxies observed with miniJPAS and SDSS. Despite the limitation of such a comparison, we find a remarkable correlation in their EWs.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 668 ( 2022-12), p. A8-
    Abstract: Context. The importance of photometric galaxy redshift estimation is rapidly increasing with the development of specialised powerful observational facilities. Aims. We develop a new photometric redshift estimation workflow TOPz to provide reliable and efficient redshift estimations for the upcoming large-scale survey J-PAS which will observe 8500 deg 2 of the northern sky through 54 narrow-band filters. Methods. TOPz relies on template-based photo- z estimation with some added J-PAS specific features and possibilities. We present TOPz performance on data from the miniJPAS survey, a precursor to the J-PAS survey with an identical filter system. First, we generated spectral templates based on the miniJPAS sources using the synthetic galaxy spectrum generation software CIGALE. Then we applied corrections to the input photometry by minimising systematic offsets from the template flux in each filter. To assess the accuracy of the redshift estimation, we used spectroscopic redshifts from the DEEP2, DEEP3, and SDSS surveys, available for 1989 miniJPAS galaxies with r 〈 22 mag AB . We also tested how the choice and number of input templates, photo- z priors, and photometric corrections affect the TOPz redshift accuracy. Results. The general performance of the combination of miniJPAS data and the TOPz workflow fulfills the expectations for J-PAS redshift accuracy. Similarly to previous estimates, we find that 38.6% of galaxies with r 〈 22 mag reach the J-PAS redshift accuracy goal of d z /(1 + z ) 〈 0.003. Limiting the number of spectra in the template set improves the redshift accuracy up to 5%, especially for fainter, noise-dominated sources. Further improvements will be possible once the actual J-PAS data become available.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages