Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cell Death & Disease, Springer Science and Business Media LLC, Vol. 13, No. 5 ( 2022-05-09)
    Abstract: Triple-negative breast cancer (TNBC) is clinically defined by the absence of estrogen and progesterone receptors and the lack of membrane overexpression or gene amplification of receptor tyrosine kinase ErbB-2/HER2. Due to TNBC heterogeneity, clinical biomarkers and targeted therapies for this disease remain elusive. We demonstrated that ErbB-2 is localized in the nucleus (NErbB-2) of TNBC cells and primary tumors, from where it drives growth. We also discovered that TNBC expresses both wild-type ErbB-2 (WTErbB-2) and alternative ErbB-2 isoform c (ErbB-2c). Here, we revealed that the inhibitors of the retrograde transport Retro-2 and its cyclic derivative Retro-2.1 evict both WTErbB-2 and ErbB-2c from the nucleus of BC cells and tumors. Using BC cells from several molecular subtypes, as well as normal breast cells, we demonstrated that Retro-2 specifically blocks proliferation of BC cells expressing NErbB-2. Importantly, Retro-2 eviction of both ErbB-2 isoforms from the nucleus resulted in a striking growth abrogation in multiple TNBC preclinical models, including tumor explants and xenografts. Our mechanistic studies in TNBC cells revealed that Retro-2 induces a differential accumulation of WTErbB-2 at the early endosomes and the plasma membrane, and of ErbB-2c at the Golgi, shedding new light both on Retro-2 action on endogenous protein cargoes undergoing retrograde transport, and on the biology of ErbB-2 splicing variants. In addition, we revealed that the presence of a functional signal peptide and a nuclear export signal (NES), both located at the N-terminus of WTErbB-2, and absent in ErbB-2c, accounts for the differential subcellular distribution of ErbB-2 isoforms upon Retro-2 treatment. Our present discoveries provide evidence for the rational repurposing of Retro-2 as a novel therapeutic agent for TNBC.
    Type of Medium: Online Resource
    ISSN: 2041-4889
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2541626-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of the Endocrine Society, The Endocrine Society, Vol. 5, No. Supplement_1 ( 2021-05-03), p. A1020-A1020
    Abstract: Triple negative breast cancer (TNBC) refers to a subtype of tumors with poor prognosis, devoid of hormone receptors and of membrane overexpression or gene amplification of ErbB-2. Due to its molecular heterogeneity, TNBC represents a major clinical challenge. In this regard, clinical biomarkers and targeted therapies remain elusive, and chemotherapy has been the standard of care for early and metastatic TNBC. ErbB-2, a member of the ErbB family of tyrosine kinase receptors, is a major player in the BC scenario. While it is a cell membrane-bound receptor, it migrates to the nucleus (NErbB-2) where it acts as a transcription factor or coactivator. We recently found that both the canonical (wild-type, WT) ErbB-2 and the alternative isoform c are located in the nucleus of TNBC, a scenario with an aggressive oncogenic potential. The route of intracellular transport from the plasma membrane to the trans Golgi network (TGN) and the endoplasmic reticulum (ER) is termed retrograde trafficking, and constitutes the pathway by which ErbB-2 migrates to the nucleus. The retrograde transport route is also hijacked by toxins and viruses to access the ER and exert their deleterious effects. Retro-2, a small molecule inhibitor, was shown to protect cells from toxin and virus effects by blocking their retrograde trafficking. Given the high levels of NErbB-2 in TNBC cells, we explored whether treatment with Retro-2 modulates localization of ErbB-2 and proliferation in TNBC. We found that Retro-2 treatment decreased the levels of both WT ErbB-2 and isoform c in the nucleus of TNBC cells demonstrating that Retro-2 effects are not limited to a particular ErbB-2 isoform. Indeed, immunofluorescence assays revealed accumulation of ErbB-2 in the Golgi after Retro-2 treatment further preventing its sorting to the ER. We previously demonstrated that growth factors induce ErbB-2 migration into the nucleus in ErbB-2-positive BC cells. Consistently, we observed that Retro-2 prevents growth factor-induced NErbB-2 in ErbB-2-positive BC cells. Retro-2 treatment resulted in a dose-dependent decrease in cell proliferation in a panel of TNBC cells, whilst did not inhibit cell proliferation in the ErbB-2-negative MCF10A normal breast cell line. Moreover, disruption of retrograde transport by Retro-2 decreased the expression of cell cycle related NErbB-2 target genes (i.e. Erk5 and cyclin D1) therefore inducing cell cycle arrest at the G0/G1 phase. Most importantly, Retro-2 excluded ErbB-2 from the nucleus and abrogated tumor growth in preclinical models of TNBC. Collectively, our findings reveal Retro-2, a non-toxic inhibitor of the retrograde transport route, as a candidate novel therapeutic agent for TNBC based on its ability to evict ErbB-2 from the nucleus and to abrogate TNBC growth.
    Type of Medium: Online Resource
    ISSN: 2472-1972
    Language: English
    Publisher: The Endocrine Society
    Publication Date: 2021
    detail.hit.zdb_id: 2881023-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Hormones and Cancer, Springer Science and Business Media LLC, Vol. 11, No. 5-6 ( 2020-10), p. 218-239
    Type of Medium: Online Resource
    ISSN: 1868-8497 , 1868-8500
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2543318-0
    detail.hit.zdb_id: 3059869-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of the Endocrine Society, The Endocrine Society, Vol. 4, No. Supplement_1 ( 2020-05-08)
    Abstract: Hormone receptor-positive (HR+, estrogen and/or progesterone receptor-positive) and HER2-negative breast cancer (BC) subtype is a biologically heterogeneous entity that comprises 70% of BCs. This subtype includes both luminal (Lum) A- and B-like subtypes, which have differences in prognosis and sensitivity to endocrine therapies. The development of biomarkers guiding treatment decisions in these settings is required. Tumor suppressor PDCD4 (programmed cell death 4), which can be found both in the nucleus (NPDCD4) or the cytoplasm (CPDCD4), inhibits tumor growth and metastasis, and its loss is associated with poor prognosis in solid tumors. To explore the clinical relevance of PDCD4 in BC, we analyzed its expression by immunohistochemistry in a cohort of 619 patients with primary invasive BC. We found that 34.7% of patients showed NPDCD4 and 21.3% showed CPDCD4. NPDCD4 positivity, but not CPDCD4, was associated with lower clinical stage (P = 0.0003), with presence of more differentiated tumors (P = 6.4x10-6), and with estrogen and progesterone receptor (PR) expression (P = 9.2x10-9 and P = 2.8x10-9, respectively). Kaplan-Meier analysis revealed that NPDCD4 expression was associated with a longer overall survival (OS) and disease-free survival (DFS) in LumA-like (P = 0.008 and P = 0.028, respectively) and LumB-like (P = 0.004 and P = 0.012, respectively) subtypes. Interestingly, patients with LumB-like tumors displaying NPDCD4 presented estimated OS and DFS rates similar to the ones observed in patients with LumA-like tumors also expressing NPDCD4, indicating that its presence improves the clinical outcome of LumB-like patients. Multivariate Cox regression analysis identified NPDCD4 as an independent predictor of good clinical outcome in both LumA-like (HR: 0.45, 95% CI 0.22-0.96, P = 0.038) and LumB-like (HR: 0.28, 95% CI 0.10-0.80, P = 0.018) subtypes. We validated our results by in silico analysis using expression data from the METABRIC cohort. Bioinformatics analysis of BC cells from the Cancer Cell Line Encyclopedia revealed a positive correlation between PDCD4 and PR expression (P = 0.015). Since LumB-like tumors present a higher risk of resistance to endocrine therapy and both PR and PDCD4 levels in this subtype are lower than in the LumA-like one, we postulated that the presence of PR may modulate PDCD4 expression. Silencing of PR expression in HR+ cells decreased PDCD4 protein levels while reconstitution of PR in a PR-null cell line increased them, confirming PR requirement for PDCD4 modulation. In line with PDCD4 physiological function, its knockdown increased cell migration capability of HR+ BC cells, whereas its restoration led to a decrease in cell migration of HR-negative BC models. Our findings identified NPDCD4 positivity as a novel biomarker of clinical outcome in LumA- and B-like subtypes and revealed PDCD4 reconstitution as a novel therapeutic strategy in BC.
    Type of Medium: Online Resource
    ISSN: 2472-1972
    Language: English
    Publisher: The Endocrine Society
    Publication Date: 2020
    detail.hit.zdb_id: 2881023-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 4_Supplement ( 2022-02-15), p. P5-13-32-P5-13-32
    Abstract: Background HER2-positive (+) and triple negative breast cancer (TNBC) have the worst survival among BC. BC patients are treated with chemotherapy (CT) and/or radiotherapy (RT), and HER2+ BC patients also receive targeted therapies, such as trastuzumab (Tz). The abundance of tumor infiltrating lymphocytes (TILs), in both HER2+ and TNBC, has a major good prognostic value. Thus, indicating that immunological evasion mechanisms are present in the tumor microenvironment (TME) hampering the efficacy of the treatments. We previously showed that soluble tumor necrosis factor α (sTNF) induces upregulation of mucin 4 (MUC4), which shields Tz epitope on HER2 impairing Tz binding and its effects. In preclinical models of de no5vo Tz-resistant tumors, administration of the sTNF blocking agent INB03 (DN) together with Tz inhibited tumor growth. We proved that MUC4 expression is an independent predictor of poor DFS in patients treated with adjuvant Tz. Our goal is to study whether MUC4 plays a role in tumor immune evasion in HER2+ and TNBC. Methods Untreated primary BC samples were assessed for TILs density (H & E) and MUC4 expression by immunohistochemistry. Tumors with TILs ≥30% and & gt;50%, for TNBC and HER2+ BC respectively, and MUC4 scores 2 and 3 (0-3) were deemed positive. A cohort of 56 TNBC and 90 HER2+BC, stage I-III were retrospectively retrieved from Hospital Fernández and Instituto Henry Moore from 2013-2017, and clinicopathological and treatment characteristics were obtained from electronic records. TNBC were treated with adjuvant (41) or neoadjuvant CT +/- RT (15). HER2+BC patients received adjuvant Tz + CT. The association between MUC4 and OS was assessed by Kaplan Meier and log rank test and between MUC4 and TILs using Chi2. JIMT-1 HER2+ BC, de novo resistant tumors to Tz, containing a doxycycline (Dox)-inducible shRNA MUC4 plasmid (JIMT-1shMUC4) growing in nude mice were treated with IgG, Tz, DN or Tz + DN. Tumor growth was measured and macrophages and NK cells were determined in the TME by flow cytometry. Anti-asialo GM1 and clodronate-encapsulated liposomes were used to deplete NK cells and macrophages, respectively. Results We found an inverse relationship between TILs and MUC4 expression in HER2+ and TNBC (P=0.02 and P= 5 x10-5, respectively). Patients with MUC4+ TNBC have a shorter OS (P=0.03) and MUC4 was an independent predictor of OS [P=0.01; HR 4.9 (95%CI 1.4-17.0)]. To study MUC4 involvement in macrophage and NK cells recruitment in a Tz resistant model, nude mice bearing JIMT-1-shMUC4 tumors were treated or not with Dox to abolish MUC4 expression. Both groups received IgG, Tz, DN or DN + Tz. In control groups (without Dox), only Tz + DN administration was able to inhibit tumor growth (75% inhibition, P & lt;0.0001 vs. IgG), in line with our previous results, and DN treatment reduced MUC4 expression. Knockdown of MUC4 expression by Dox, showed that Tz alone was effective in inhibiting JIMT-shMUC4 tumor growth at similar levels than Tz + DN group. Tumor growth inhibition was accompanied by an increase in NK cells activation and degranulation, and a rise in M1/M2 macrophage ratio. Depletion of macrophages or NK cells totally blunted antitumor effect of Tz + DN in control tumors. In MUC4-silenced tumors only macrophage depletion was able to abolish Tz antitumor effect. Conclusion Our results suggest that i) MUC4 expression is associated with immunologically “cold” HER2+ and TNBC, inducing an immunosuppressive TME that reflects in poor DFS/OS, and it confers resistance to Tz in HER2+ BC; ii) elimination of MUC4 expression reverses resistance to Tz; iii) tumor infiltrating macrophages are critical to the anti-tumor response in HER2+ BC. Patients with MUC4+ HER2+ or MUC4+ TNBC should benefit from sTNF blockade treatment leading to MUC4 downregulation and higher TILs, which would result in a better response to Tz and probably to immune checkpoint inhibitors. Citation Format: Roxana Schillaci, Sofia Bruni, Florencia Mauro, María F Mercogliano, Agustina Roldan-Deamicis, Cecilia J Proietti, Rosalía Cordo-Russo, Gloria Inurrigarro, Agustina Dupont, Carla Adami, Daniel Lopez Della Vecchia, Sabrina Barchuck, Silvina Figurelli, Ernesto Gil Deza, Sandra Ares, Felipe G Gercovich, Patricia V Elizalde. Mucin 4 expression in high risk breast cancer: Predicting and overcoming resistance to immunotherapy [abstract]. In: Proceedings of the 2021 San Antonio Breast Cancer Symposium; 2021 Dec 7-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2022;82(4 Suppl):Abstract nr P5-13-32.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of the Endocrine Society, The Endocrine Society, Vol. 6, No. Supplement_1 ( 2022-11-01), p. A872-A872
    Abstract: Triple negative breast cancer (TNBC) is clinically defined by the absence of estrogen and progesterone receptors and the lack of membrane overexpression or gene amplification of the receptor tyrosine kinase ErbB-2/HER2. Due to its heterogeneity, clinical biomarkers and targeted therapies for this disease remain elusive, and chemotherapy has been the standard of care for TNBC. ErbB-2 is classically located at the membrane of BC cells, where it triggers signaling cascades and promotes oncogenesis. We previously demonstrated that ErbB-2 is also localized in the nucleus (NErbB-2) of TNBC cells, from where it drives growth (1). We also discovered that TNBC expresses both wild-type ErbB-2 (WTErbB-2) and alternative ErbB-2 isoform c (ErbB-2c) (1). ErbB-2 migrates to the nucleus via retrograde transport. Here, we revealed that Retro-2, an inhibitor of retrograde transport that protects cells form the deleterious effects of toxins and viruses, evicts both WTErbB-2 and ErbB-2c from the nucleus of BC cells. Using BC models from several molecular subtypes, as well as normal breast cells, we demonstrated that Retro-2 specifically halts the proliferation of cells expressing NErbB-2. Moreover, Retro-2 decreased the expression of genes induced by NErbB-2 (i. e. cyclin D1 and Erk5) and promoted cell cycle arrest at G0/G1 phase and apoptosis. In addition to R2 growth inhibitory activity in vitro, we here also demonstrated that its optimized cyclic derivative Retro-2.1 (in particular the (S)-enantiomer) showed improved efficacy both to evict ErbB-2 isoforms from the nucleus and to inhibit proliferation in vitro. Importantly, Retro-2 eviction of both ErbB-2 isoforms from the nucleus resulted in a striking growth abrogation in multiple TNBC preclinical models, including xenografts and tumor explants). Our mechanistic studies demonstrated that Retro-2 induces a differential accumulation of WTErbB-2 at the early endosomes and plasma membrane, and of ErbB-2c at the Golgi, shedding light both on Retro-2 action on endogenous protein cargoes undergoing retrograde transport and on the biology of ErbB-2 splicing variants. Compelling evidence demonstrated that mRNAs 5' and 3' untranslated regions (UTRs) mediate post-transcriptional regulation of gene expression and determine protein levels and fate. While both T1 and T3 have different 5' but the same 3' UTRs sequences, our in silico studies showed that T1 and T3 RNA secondary structures vary in the region containing both their 5' and 3' UTRs. These findings suggest that T3 secondary structure impacts in its cell specific localization. Together, our present discoveries identify R2 as a precision oncology tool to target NErbB-2 retrograde transport. This novel theragnostic approach could greatly improve the outcome of TNBC patients. (1) Chervo MF et al, Oncogene 2020: 39: 6245-62. Presentation: No date and time listed
    Type of Medium: Online Resource
    ISSN: 2472-1972
    Language: English
    Publisher: The Endocrine Society
    Publication Date: 2022
    detail.hit.zdb_id: 2881023-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of the Endocrine Society, The Endocrine Society, Vol. 6, No. Supplement_1 ( 2022-11-01), p. A878-A878
    Abstract: ErbB-2, a member of ErbB family of receptor tyrosine kinases, is a key oncogenic driver in breast cancer. Despite clinical efficiency of ErbB-2-targeted therapies (trastuzumab, TZ), resistance to drugs is a major issue in the clinic. While ErbB-2 is mainly a plasma membrane-bound receptor, it also migrates to the nucleus (NErbB-2) where it can act as a transcription factor or coactivator. We previously reported that NErbB-2 is a major proliferation driver in TZ-resistant breast cancer. To investigate the NErbB-2 dependent transcriptome, RNAseq was performed using a TZ-resistant breast cancer model (JIMT-1 cells) with high constitutive levels of NErbB-2. JIMT-1 cells were transfected with an ErbB-2 nuclear localization domain mutant (hErbB-2ΔNLS), which also acts as a dominant-negative inhibitor of endogenous NErbB-2 migration. Exclusion of ErbB-2 from the nucleus resulted in up-regulation of 280 genes and down-regulation of 33 genes. Functional analysis revealed that NErbB-2 blockade enriched the expression of genes involved in type-I interferon (IFN) signaling pathway. IFNB1 and its downstream effectors OAS2 and TRIM22 were among the top up-regulated genes. In an independent breast cancer model (i. e., HCC-1569 cells), exclusion of NErbB-2 from the nucleus also induced expression of these genes. Blockade of NErbB-2 localization by injection of the hErbB-2ΔNLS mutant into JIMT-1 tumor xenografts significantly inhibited in vivo tumor growth and induced mRNA expression of IFNB1, OAS2 and TRIM22. Interestingly, blockade of NErbB-2 localization by treatment with Retro-2, an inhibitor of the retrograde transport, showed similar effects consistent with modulation of the IFN signaling pathway by NErbB-2. Bioinformatic analyses showed that both the promoter and the coding region of the IFNB1 gene contain ErbB-2 associated sequences (HAS sites). ChIP-PCR analyses revealed ErbB-2 recruitment to the HAS sites of the IFNB1 promoter and coding regions in normal growth conditions. Transfection of JIMT-1 cells with the hErbB-2ΔNLS mutant abolished the recruitment of ErbB-2 at the IFNB1 gene and also caused an increase in histone H4 acetylation, a marker of active gene transcription. NErbB-2 immunostaining in a cohort of 32 primary invasive ErbB-2-positive breast carcinomas treated with TZ revealed that NErbB-2 expression correlated with a poor disease-free survival. While this cohort is small, the findings suggest that NErbB-2 could be used as a biomarker of poor response to TZ in the clinic. In summary, our findings indicate that NErbB-2 drives the growth of TZ-resistant breast cancer cells via transcriptional repression of the IFNB1 signaling pathway, and highlight NErbB-2 as a therapeutic target and biomarker in TZ-resistant breast cancer. Presentation: No date and time listed
    Type of Medium: Online Resource
    ISSN: 2472-1972
    Language: English
    Publisher: The Endocrine Society
    Publication Date: 2022
    detail.hit.zdb_id: 2881023-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Oncogene, Springer Science and Business Media LLC, Vol. 39, No. 39 ( 2020-09-24), p. 6245-6262
    Type of Medium: Online Resource
    ISSN: 0950-9232 , 1476-5594
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2008404-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 344-344
    Abstract: Triple negative breast cancer (TNBC) is clinically defined by the absence of estrogen and progesterone receptors and the lack of membrane overexpression or gene amplification of the receptor tyrosine kinase ErbB-2/HER2. Due to its heterogeneity, clinical biomarkers and targeted therapies for this disease remain elusive, and chemotherapy has been the standard of care for early and metastatic TNBC. ErbB-2 is classically located at the membrane of BC cells, where it triggers signalling cascades and promotes oncogenesis. However, we have demonstrated that ErbB-2 is also localized in the nucleus (NErbB-2) of TNBC cells and primary tumors, from where it drives growth. We also discovered that TNBC expresses both wild-type ErbB-2 (WTErbB-2) and alternative ErbB-2 isoform c (ErbB-2c). ErbB-2 migrates to the nucleus via retrograde transport. The small molecule Retro-2 is a non-toxic inhibitor of the retrograde transport route that protects cells from the deleterious effects of toxins and viruses. Here, we revealed that Retro-2 evicts both WTErbB-2 and ErbB-2c from the nuclei. Using BC models from several molecular subtypes, we demonstrated that Retro-2 specifically halts the proliferation of cells expressing NErbB-2 in a dose-dependent manner, whilst did not inhibit cell proliferation in the ErbB-2-negative MCF10A normal breast cell line. Additionally, Retro-2 decreased the expression of genes induced by NErbB-2 (cyclin D1 and Erk5) and promoted cell cycle arrest at G0/G1 phase and apoptosis. Even more, in preclinical models (including xenografts and tumor explants), Retro-2 treatment resulted in the eviction of NErbB-2 and abrogation of tumor growth. Our mechanistic studies demonstrated that Retro-2 induces a differential accumulation of WTErbB-2 at the early endosomes and plasma membrane, and of ErbB-2c at the Golgi, further preventing its sorting to the endoplasmic reticulum. These findings shed light both on Retro-2 action on endogenous protein cargoes undergoing retrograde transport and on the biology of ErbB-2 splicing variants. Together, our present discoveries provide evidence for the rational repurposing of Retro-2 as a novel therapeutic agent for TNBC. Citation Format: Santiago Madera, Franco Izzo, Maria F. Chervo, Agustina Dupont, Violeta A. Chiauzzi, Sofia Bruni, Ezequiel Petrillo, Diego Montero, Sharon Merin, Maria F. Mercogliano, Cecilia J. Proietti, Roxana Schillaci, Rosalia I. Cordo Russo, Patricia V. Elizalde. Blockade of retrograde transport in triple negative breast cancer excludes ErbB-2 isoforms from the nucleus and abrogates tumor growth [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 344.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: The Lancet, Elsevier BV, Vol. 399, No. 10339 ( 2022-05), p. 1941-1953
    Type of Medium: Online Resource
    ISSN: 0140-6736
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 2067452-1
    detail.hit.zdb_id: 3306-6
    detail.hit.zdb_id: 1476593-7
    SSG: 5,21
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages