Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cureus, Springer Science and Business Media LLC
    Type of Medium: Online Resource
    ISSN: 2168-8184
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2747273-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Cureus, Springer Science and Business Media LLC
    Type of Medium: Online Resource
    ISSN: 2168-8184
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2747273-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society of Hematology ; 2008
    In:  Blood Vol. 112, No. 11 ( 2008-11-16), p. 5327-5327
    In: Blood, American Society of Hematology, Vol. 112, No. 11 ( 2008-11-16), p. 5327-5327
    Abstract: Background: Multiple Myeloma (MM) is characterized by a clonal proliferation of antibody producing malignant plasma cells. Complete or partial monoallelic deletion of chromosome 13, is commonly observed in tumor cells of patients with monoclonal gammopathy of unknown significance and in over 50% of MM patients, as well as chronic lymphocytic leukemia (CLL) and mantle cell lymphoma. Recurrent loss of a minimal common region (MCR) of 10 megabases at 13q14, in MM and CLL suggests the MCR harbors a tumor suppressor gene(s) (TSG) with biological and clinical relevance. Within this MCR resides the Ret Finger Protein 2 (RFP2) encoding gene, which produce an E3 ubiquitin ligase located in the endoplasmic reticulum (ER). Because of its copy number-dependent expression, its strong and unique promoter, and its associated inferior survival with reduced expression in MM, RFP2 represents a candidate TSG. Nevertheless, its role and targets have not yet been established. Here we describe a functional analysis of RFP2 in MM cells. Methods: The MMS1 MM cell line lacks chromosome 13 deletion. To study the effects of loss of RFP2 in this line we used the PLKO-GFP lentiviral vector to stably transduce a RFP2 shRNA. Flow cytometer selected cell lines exhibit significantly reduced expression of RFP2 relative transduced shRNA controls or to the parental line. Cell growth rate was measured using trypan blue counting, soft agar colony formation and thymidine incorporation. Cell cycle analysis and apoptosis were measured by flow cytometry after staining with PI or Annexin-V PE and 7AAD, respectively. Intracellular signal modulation was demonstrated by Western blotting. Results: At day six post transduction, 75–95% of MMS1 cells were GFP positive. RFP2 downregulation induced an impairment of cell growth with a G2 phase arrest and a profound apoptosis (over 50% at day six as compared with less than 15% of controls). This effect was mediated through ER stress evidenced by upregulation of p-eIF2α and Bip, and the induction of Caspase-8, 9 and 3 cleavage. These effects could be abrogated by the ZVAD-FMK pancaspase inhibitor and by overcoming the G2 phase arrest with caffeine. Similar results were observed in MM cell lines RPMI-8226, NCI-H929, MM1S, and SACHI, and were independent of presence of a monoallelic 13q deletion. RFP2 complementation did not produce by itself a significant growth promoting effect, but was able to rescue the knockdown-induced growth retardation. In order to identify potential RFP2 target proteins, RFP2 was immunoprecipitated from MM cell lines. RFP2 protein complexes are currently being analyzed by mass-spectometry and results of these studies will be presented. Conclusions: RFP2 is a copy number sensitive gene mapping to a deletion hotspot at 13q14 and reduced RNA expression is associated with poor survival in MM. Functional studies revealed that shRNA mediated knockdown of RFP2 in MM causes growth retardation and apoptosis, mediated by ER stress and a G2 arrest. Although RFP2 did not prove itself to be a tumor suppressor gene in our studies, disrupting RFP2 function may represent a novel therapeutic target in MM and other lymphoid malignancies.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 114, No. 22 ( 2009-11-20), p. 1963-1963
    Abstract: Abstract 1963 Poster Board I-986 Background: Multiple Myeloma (MM), a cancer of plasma cells is characterized by frequent chromosomal alterations. Deletion of chromosome 13, especially band 13q14, is commonly observed in early stages of MM, suggesting the presence of tumor suppressor genes within this region. When studied in the context of CLL, the miR 15a and 16-1 cluster was associated with a distinct miR signature and clinical outcome. Over-expression of miR16 caused induction of apoptosis and downregulation of the anti apoptotic gene BCL2 in a megakaryocytic leukemia cell line and induced growth arrest in MM cells. Nonetheless, being lost in CLL, MM, MCL and LPL, their functional role has not been studied using a loss-of-function approach in any of these lymphoid malignancies. Here, we describe the generation of an in vivo system for the long term, stable knockdown of miR 15a/ 16-1 expression in myeloma cells to recapitulate the conditions seen in chromosome 13q14 deleted MM. Methods: Using lentiviral vectors to stably express a competitive sponge miR16 inhibitor we set up a system to functionally validate the role of microRNA 15a/16-1 cluster. Pure populations of lentivirally transduced MM cell lines were sorted by flow cytometry using GFP marker. Decreased miRs 15a and 16 expression levels were assessed by Northern blot and R-luciferase reporter system. Cell growth rate was measured using trypan blue counting, and thymidine incorporation. Cell cycle analysis was measured by flow cytometry after staining with PI. Intracellular signal modulation was demonstrated by Western blotting. RNA from MM cell lines expressing the control sponge or sponge16 were hybridized on an Affymetrix U133A 2.0 array chip, and validated using quantitative real time PCR. Xenograft murine models were performed using the stable MM cell lines injected into 6-week old NOD.CB17-PrkdcSCID/J irradiated mice. Results: Selected stable miR knockdown MM cell lines exhibited significantly reduced expression of miRs15a/16-1 as assessd by both by mRNA levels and miR luciferase reporter assays. The knockdown cells showed a significant increase in growth rates (1.5-2 fold) compared to control cells, as measured by viable cell counts and proliferation by thymidine incorporation in vitro. Importantly, miR16 inhibition decreased animal survival in a xenograft model of MM by increasing tumor load, invasiveness and host angiogenesis. To further delineate the role of miR15a/16 in MM and to gain additional insight into the possible target genes regulated by this cluster, we performed gene expression-profiling analysis in controls and miR16 deficient MMS1 and RPMI cell lines. Since our sponge system produces downregulation of the miRs, we focused on the upregulated probes. Expression profiling analysis of miR16 deficient cells identified a surprisingly large number of downstream target-genes such as FGFR1, PI3KCa, MDM4, VEGFa, as well as secondary affected genes such as JUN and Jag1. These results were verified both at the mRNA level and the protein level, as well as in other MM cell lines. Moreover, we were able to show that these knockdown cells were partially addicted to some of these pathways using specific drug inhibitors. We further validated designated genes as direct miR16 targets by showing binding sites within the conserved 3' UTR and also within the mRNA coding region, thus indicating that the miRs may have many more possible targets than anticipated by conventional prediction methods. Conclusions: Using this loss-of-function system, which mimics the pleiotropic chronic effects of microRNA loss at the 13q chromosomal deletion, provides a valuable tool to investigate their function as tumor suppressor genes in MM pathogenesis, affecting multiple targets, and may represent a novel potential for therapeutic targeting in MM and other lymphoid malignancies. Disclosures: Munshi: Seattle Genetics, Inc.: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Nanoscale, Royal Society of Chemistry (RSC), Vol. 10, No. 26 ( 2018), p. 12612-12624
    Type of Medium: Online Resource
    ISSN: 2040-3364 , 2040-3372
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2018
    detail.hit.zdb_id: 2515664-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Physics G: Nuclear and Particle Physics, IOP Publishing, Vol. 50, No. 3 ( 2023-03-01), p. 030501-
    Abstract: High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF’s physics potential.
    Type of Medium: Online Resource
    ISSN: 0954-3899 , 1361-6471
    RVK:
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 1472964-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2001
    In:  Cancer Chemotherapy and Pharmacology Vol. 48, No. 4 ( 2001-10-1), p. 312-318
    In: Cancer Chemotherapy and Pharmacology, Springer Science and Business Media LLC, Vol. 48, No. 4 ( 2001-10-1), p. 312-318
    Type of Medium: Online Resource
    ISSN: 0344-5704 , 1432-0843
    Language: Unknown
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2001
    detail.hit.zdb_id: 1458488-8
    SSG: 15,3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Elsevier BV ; 2004
    In:  Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis Vol. 554, No. 1-2 ( 2004-10), p. 121-129
    In: Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, Elsevier BV, Vol. 554, No. 1-2 ( 2004-10), p. 121-129
    Type of Medium: Online Resource
    ISSN: 0027-5107
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2004
    detail.hit.zdb_id: 1491099-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 114, No. 22 ( 2009-11-20), p. 1786-1786
    Abstract: Abstract 1786 Poster Board I-812 Background Multiple Myeloma (MM) is characterized by a clonal proliferation of antibody producing malignant plasma cells. Complete or partial monoallelic deletion of chromosome 13, is commonly observed in tumor cells of patients with monoclonal gammopathy of unknown significance and in over 50% of MM patients, as well as chronic lymphocytic leukemia (CLL) and mantle cell lymphoma. Recurrent loss of a minimal common region (MCR) of 10 megabases at 13q14, in MM and CLL suggests the MCR harbors a tumor suppressor gene(s) (TSG) with biological and clinical relevance. Within this MCR resides the Ret Finger Protein 2 (RFP2) encoding gene, which produce an E3 ubiquitin ligase located in the endoplasmic reticulum (ER). Because of its copy number-dependent expression, its strong and unique promoter, and its associated inferior survival with reduced expression in MM, RFP2 represents a candidate TSG. Nevertheless, its role and targets have not yet been established. Here we describe a functional analysis of RFP2 in MM cells. Methods: The MMS1 MM cell line lacks chromosome 13 deletion. To study the effects of loss of RFP2 in this line we used the PLKO- GFP lentiviral vector to stably transduce a RFP2 shRNA. Flow cytometer selected cell lines exhibit significantly reduced expression of RFP2 relative transduced shRNA controls or to the parental line. Cell growth rate was measured using trypan blue counting, soft agar colony formation and thymidine incorporation. Cell cycle analysis and apoptosis were measured by flow cytometry after staining with PI or Annexin-V PE and 7AAD, respectively. Intracellular signal modulation was demonstrated by Western blotting. Results At day six post transduction, 75-95% of MMS1 cells were GFP positive. RFP2 downregulation induced an impairment of cell growth with a G2 phase arrest and a profound apoptosis (over 50% at day six as compared with less than 15% of controls). This effect was mediated through ER stress evidenced by upregulation of p-eIF2a and Bip, and the induction of Caspase-8, 9 and 3 cleavage. RFP2 complementation did not produce by itself a significant growth promoting effect, but was able to rescue the knockdown-induced growth retardation. The above described presence of ER stress, combined with the previous reports that RFP2 has E3 ubiquitin ligase activity prompted us to assess total protein ubiquitination. Concordant with its effects on ER stress, RFP2 downregulation was associated with significantly higher levels of poly-ubiquitinated proteins. Subsequently, we were able to document a significant reduction (60% inhibition) in 20S proteasome activity in RFP2 down regulated cells. Proteasome inhibition by RFP2 down regulation was confirmed in other MM cell lines and was partially abrogated by restoring RFP2 levels by overexpression. Importantly, RFP2 down regulated cells were more sensitive to bortezomib; indeed proteasome inhibition was synergistic with RFP2 downregulation in MM cells. The above results prompted us to study the mechanism whereby RFP2 impacts survival and proliferation of MM cells. Inhibition of the NF-kappa-B (NFκB) pathway is a hallmark of proteasome-related growth retardation and apoptosis and is a key pathway in MM. We show that NFkB luciferase reporter assay was associated with significant activity reduction with RFP2 downregulation. To define the mechanism of this process, we examined the level of NFkB related proteins in nuclear and cytoplasmic fractions. Interestingly, the most prominent effect observed in RFP2 down regulated cells was increased levels of IkBá in the nucleus. Altogether, these results support our supposition that the effects of RFP2 downregulation are mediated through an inhibition of the NFkB pathway that is associated with increased nuclear IkBa as well as a decrease in 20S proteasome activity. Conclusions RFP2 is a gene mapping to a deletion hotspot at 13q14 and reduced RNA expression is associated with poor survival in MM. Functional studies revealed that shRNA mediated knockdown of RFP2 in MM causes growth retardation and apoptosis, mediated by ER stress and a G2 arrest, mediated by proteasome inhibition and reduced NFkB activity. Although RFP2 did not prove itself to be a tumor suppressor gene in our studies, targeting RFP2 may represent a novel therapeutic approach in MM and other lymphoid malignancies. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 69, No. 19 ( 2009-10-01), p. 7577-7586
    Abstract: Several components of the Wnt signaling cascade have been shown to function either as tumor suppressor proteins or as oncogenes in multiple human cancers, underscoring the relevance of this pathway in oncogenesis and the need for further investigation of Wnt signaling components as potential targets for cancer therapy. Here, using expression profiling analysis as well as in vitro and in vivo functional studies, we show that the Wnt pathway component BCL9 is a novel oncogene that is aberrantly expressed in human multiple myeloma as well as colon carcinoma. We show that BCL9 enhances β-catenin–mediated transcriptional activity regardless of the mutational status of the Wnt signaling components and increases cell proliferation, migration, invasion, and the metastatic potential of tumor cells by promoting loss of epithelial and gain of mesenchymal-like phenotype. Most importantly, BCL9 knockdown significantly increased the survival of xenograft mouse models of cancer by reducing tumor load, metastasis, and host angiogenesis through down-regulation of c-Myc, cyclin D1, CD44, and vascular endothelial growth factor expression by tumor cells. Together, these findings suggest that deregulation of BCL9 is an important contributing factor to tumor progression. The pleiotropic roles of BCL9 reported in this study underscore its value as a drug target for therapeutic intervention in several malignancies associated with aberrant Wnt signaling. [Cancer Res 2009;69(19):7577–86]
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2009
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages