Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 3062-3062
    Abstract: Acute lymphoblastic leukemia (ALL) consists of genetically heterogeneous cell subpopulations, but little is known about how genetic differences lead to functional differences between the clones. Of major clinical importance, aggressive, treatment-resistant and putatively relapse-inducing subclones need to be identified and require effective eradication by treatment. The most aggressive subpopulation likely determines prognosis and outcome in each patient. We aimed at characterizing on a functional as well as on a genetic level single stem cell clones derived from patients' samples growing in mice and to combine the results of both levels in order to learn which genetic characteristics are associated with adverse functional behavior. We transplanted primary tumor cells from a 5-year old girl with hyperdiploid ALL involving a trisomic X chromosome at first relapse into severely immune-compromised mice and lentivirally modified them to express the fluorochromes red, blue and green at different amounts and combinations (RGB marking, Weber et al., 2012). Eight single stem cell clones were generated by limiting dilution transplantation and their uniqueness was verified by ligation-mediated (LM) PCR. We functionally compared the single stem cell clones between each other by re-mixing them in a single mouse for in vivo assays; analysis was performed one-by-one for each clone by flow cytometry where they could be distinguished from each other using their unique color codes. Clones showed clear differences in proliferation rate with faster and slower growing clones, independently whether 2 or 5 clones were mixed. When mice harboring clone mixtures were treated with conventional chemotherapy, clonal composition changed markedly and resistant clones overgrew sensitive clones indicating selective clonal responses and clonal advantage. A clone which showed especially slow growth in vivo was most resistant to in vivo treatment with Glucocorticoids. The slowly proliferating, Glucocorticoid-resistant clone had lost the additional X chromosome, which was present in all other clones and the bulk and showed a distinct DNA-methylation pattern analyzed by 450K arrays (illumina). In exome analysis, the clone showed 11 unique alterations including a single nucleotide variant in the oncogene USP6. We are currently performing RNA sequencing analysis to assess the differential gene expression in the clones. Taken together, genetic multicolor marking PDX ALL cells in the individualized xenograft mouse model allowed generating viable single cell clones for genetic functional characterization in vivo. Within the heterogeneous tumor bulk, an subclone existed which showed slow tumor growth and drug resistance which was associated with distinct genetic characteristics. Our studies allow the challenging functional characterization of subclones in vivo in order to develop efficient novel treatment approaches to eliminate aggressive stem cell clones in ALL. Weber K, Thomaschewski M, Benten D, Fehse B., RGB marking with lentiviral vectors for multicolor clonal cell tracking. Nat Protoc. 2012 Apr 5;7(5):839-49. doi: 10.1038/nprot.2012.026. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 456-456
    Abstract: Acute lymphoblastic leukemia (ALL) is known to consist of several clones that might have different chromosomal, genetic or epigenetic aberrations. However, little is known about functional diversity in these different clones. In some patients, cells cannot be eradicated by standard therapy regimens, and aggressive or otherwise unfavorable clones might survive, eventually resulting in relapse and a poor prognosis of the patients. Here, we asked whether genetically distinct clones of ALL from a single patient would show a functionally distinct response towards drug treatment in vivo. As technical approach, we genetically engineered primary patients' ALL cells growing in immuno-compromized NSG mice as patient derived xenograft (PDX) cells by lentiviral transduction. ALL PDX cells were red-green-blue (RGB) color marked in order to discriminate several differently colored cell populations in the same mouse in functional in vivo experiments. ALL PDX cells further expressed luciferase for bioluminescence in vivo imaging (BLI) for sensitive and reliable monitoring of disease burden. Limiting dilution transplantation of RGB marked PDX cells transplanted into groups of mice allowed generating individually marked single cell clones which were discriminated by flow cytometry. Populations expressing a distinct color were sorted and analyzed by ligation mediated PCR to verify distinct integration of lentiviral inserts to prove single cell clone (SCC) origin of the population. In sum, eight distinct SCCs could be generated and were used for functional and -OMICs approaches. Targeted resequencing of the eight SCCs and the bulk cells revealed that all samples had mutations in CSMD1 and HERC1 with variant allele frequencies (VAF) of 0.5, indicating that these mutations represent the founding clone. However, we also found mutations that were only present in single samples: FAT1 and STAG2 mutations were found in SCC 3, whereas CSMD1 and USP6 mutations were found in SCC 6. Whole exome sequencing revealed SCC specific patterns, identifying SCC 6 being the clone furthest away from the bulk population. As the patient showed a high hyperdiploidy (+6,+13,+14,+17,+18,+21,+22,+X), we tested SCC and bulk cells by fluorescence in situ hybridization (FISH) and found that both the bulk sample and the SCCs consisted mainly of cells harboring three X chromosomes and to a minor proportion (between 2% and 20%) of cells harboring two X chromosomes. Only SCC 6 consisted exclusively of cells harboring two X chromosomes. Additionally, this SCC showed a distinct DNA-methylation pattern analyzed by 450K arrays (illumina). To analyze if the chromosomal, genetic and epigenetic differences also resulted in functional diversity, we first performed a competitive transplantation assay, injecting a mixture of five SCCs in the same ratio (20% each) into single mice. After 42 days when overt leukemia had established in the mice, cells were re-isolated and proportion of SCCs reanalyzed according to their specific color. Interestingly, SCC 5 (25%) and 7 (36%) had a clear growth advantage over SCCs 1 (14%), 6 (13%) and 8 (12%). The same pattern could be overserved if only SCC 5 (50% in, 92% out) and SCC 6 (50% in, 8% out) were transplanted. Next, response towards chemotherapeutic drugs was assessed. In vitro, SCC 6 was much more resistant towards the glucocorticoids prednisolon and dexamethasone (Dexa) compared to all other SCCs and bulk cells. Cells of SCC 5 and SCC 6 were mixed in equal amounts and transplanted into mice. Four days after transplantation, mice were randomized and treated with PBS or Dexa (2 or 8 mg/kg i.p., 5 days a week, 5 weeks). BLI showed a clear response towards therapy of the entire tumor. After 61 days, control treated mice showed again an outgrowth of SCC 5 (83% vs. 17% SCC 6), while Dexa treated animals showed the opposite pattern (Dexa 2 mg/kg: SCC 6 35%; Dexa 8 mg/kg: SCC 6 59%) indicating that SCC 6 was more resistant towards Dexa treatment in vivo. Taken together, our results clearly show that within a single ALL patient, genetically and functionally distinct subpopulations exist. Combining PDX model with genetic marking of the cells enables us to in-depth analyze SCCs of a single patient sample and eventually identify adverse prognostic markers. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Elsevier BV ; 2017
    In:  Experimental Hematology Vol. 53 ( 2017-09), p. S93-
    In: Experimental Hematology, Elsevier BV, Vol. 53 ( 2017-09), p. S93-
    Type of Medium: Online Resource
    ISSN: 0301-472X
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    detail.hit.zdb_id: 2005403-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 2632-2632
    Abstract: Expression profiling and next generation sequencing have enabled a detailed knowledge on alterations present in tumors from individual patients. In contrast, only limited understanding exists on the role that each alteration plays for the existing tumor. Of direct clinical interest, genes are of special interest which harbor an essential function for tumor maintenance and growth as they represent putative targets for anti-cancer therapy. Characterizing gene functions is demanding regarding both techniques and resources. Questions on gene function are often studied in established tumor cell lines, although establishing cell lines from primary tumors is rarely successful in acute leukemias. Primary acute leukemia cells poorly grow in vitro and established acute leukemias cell lines rely on additional mutations enabling in vitro growth, making them doubtful models to study genes with essential function. To bridge the gap, we aimed at studying gene function in the complex environment of individual tumors. As primary acute leukemia cells are unable to grow in vitro, we used the orthotopic model of patient-derived xenograft (PDX) leukemia and amplified cells in mice. We established a novel technique to manipulate distinct signaling proteins in PDX cells using lentiviruses and knockdown. We expressed small hairpin RNA (shRNA) in the background of micro RNA 30 (miR30) under control of a Pol II promoter and 3 prime of dsRED as molecular marker. This approach closely links expression of the shRNA to the fluorochrome and resulted in a potent and stable knockdown. We expressed a control shRNA targeting Renilla luciferase and several shRNA sequences targeting XIAP. In order to discriminate different derivative cell populations within a single mouse, we co-expressed a second fluorochrome from a second plasmid so that green cells harbored a knockdown of XIAP, while blue cells harbored the control construct, thus allowing in vivo outcompete proliferation assays. We called our new approach "genetically engineered PDX (GEPDX)" models in parallel to genetically engineered mouse models (GEMM). We used our new technology to study the role of XIAP, the X-linked inhibitor of apoptosis for acute lymphoblastic leukemia (ALL), the single most frequent tumor in children. XIAP is frequently and highly overexpressed in hematological malignancies and its up-regulation was shown to be associated with inferior prognosis of patients in different tumors. Nevertheless XIAP's role for tumor maintenance remains unclear. In several preB- and T-cell ALL cell lines, potent and stable knockdown of XIAP did not alter cell proliferation in vitro or upon xeno-transplantation in vivo. Thus expression levels of XIAP seem irrelevant for spontaneous proliferation of established acute leukemia cell lines in vitro and in vivo. We next studied PDX ALL cells growing in mice as model closer related to patients. We generated GEPDX cells from two children with relapse of a B precursor ALL with either knockdown of XIAP or control knockdown together with the appropriate molecular color markers. When blue and green GEPDX cells harboring control or XIAP knockdown, respectively, were co-transplanted into mice at a 1:1 ratio in a competitive outcompete assay, control transfected cells significantly overgrew or even eliminated cells with XIAP knockdown in both samples studied. GEPDX cells with knockdown of XIAP showed a significant and dose-dependent growth disadvantage in vivo compared to control cells indicating that XIAP played an essential role for PDX cells growing in vivo. Thus, our novel technique of genetic engineering in PDX cells revealed an essential role of XIAP for tumor maintenance and growth in patients' tumor cells making XIAP an attractive therapeutic target in ALL. As established ALL cell lines were unable to unravel this important role of XIAP, GEPDX might be superior to cell lines for identifying genes with essential function. GEPDX represent a powerful new tool to characterize the complex environment of individual patients' tumor cells in vivo, the function of the many lesions and alterations described by expression profiling and next generation sequencing. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages