Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 642 ( 2020-10), p. A2-
    Abstract: Context. The Solar Orbiter spacecraft will be equipped with a wide range of remote-sensing (RS) and in situ (IS) instruments to record novel and unprecedented measurements of the solar atmosphere and the inner heliosphere. To take full advantage of these new datasets, tools and techniques must be developed to ease multi-instrument and multi-spacecraft studies. In particular the currently inaccessible low solar corona below two solar radii can only be observed remotely. Furthermore techniques must be used to retrieve coronal plasma properties in time and in three dimensional (3D) space. Solar Orbiter will run complex observation campaigns that provide interesting opportunities to maximise the likelihood of linking IS data to their source region near the Sun. Several RS instruments can be directed to specific targets situated on the solar disk just days before data acquisition. To compare IS and RS, data we must improve our understanding of how heliospheric probes magnetically connect to the solar disk. Aims. The aim of the present paper is to briefly review how the current modelling of the Sun and its atmosphere can support Solar Orbiter science. We describe the results of a community-led effort by European Space Agency’s Modelling and Data Analysis Working Group (MADAWG) to develop different models, tools, and techniques deemed necessary to test different theories for the physical processes that may occur in the solar plasma. The focus here is on the large scales and little is described with regards to kinetic processes. To exploit future IS and RS data fully, many techniques have been adapted to model the evolving 3D solar magneto-plasma from the solar interior to the solar wind. A particular focus in the paper is placed on techniques that can estimate how Solar Orbiter will connect magnetically through the complex coronal magnetic fields to various photospheric and coronal features in support of spacecraft operations and future scientific studies. Methods. Recent missions such as STEREO, provided great opportunities for RS, IS, and multi-spacecraft studies. We summarise the achievements and highlight the challenges faced during these investigations, many of which motivated the Solar Orbiter mission. We present the new tools and techniques developed by the MADAWG to support the science operations and the analysis of the data from the many instruments on Solar Orbiter. Results. This article reviews current modelling and tool developments that ease the comparison of model results with RS and IS data made available by current and upcoming missions. It also describes the modelling strategy to support the science operations and subsequent exploitation of Solar Orbiter data in order to maximise the scientific output of the mission. Conclusions. The on-going community effort presented in this paper has provided new models and tools necessary to support mission operations as well as the science exploitation of the Solar Orbiter data. The tools and techniques will no doubt evolve significantly as we refine our procedure and methodology during the first year of operations of this highly promising mission.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 642 ( 2020-10), p. A3-
    Abstract: Solar Orbiter is the first space mission observing the solar plasma both in situ and remotely, from a close distance, in and out of the ecliptic. The ultimate goal is to understand how the Sun produces and controls the heliosphere, filling the Solar System and driving the planetary environments. With six remote-sensing and four in-situ instrument suites, the coordination and planning of the operations are essential to address the following four top-level science questions: (1) What drives the solar wind and where does the coronal magnetic field originate?; (2) How do solar transients drive heliospheric variability?; (3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?; (4) How does the solar dynamo work and drive connections between the Sun and the heliosphere? Maximising the mission’s science return requires considering the characteristics of each orbit, including the relative position of the spacecraft to Earth (affecting downlink rates), trajectory events (such as gravitational assist manoeuvres), and the phase of the solar activity cycle. Furthermore, since each orbit’s science telemetry will be downloaded over the course of the following orbit, science operations must be planned at mission level, rather than at the level of individual orbits. It is important to explore the way in which those science questions are translated into an actual plan of observations that fits into the mission, thus ensuring that no opportunities are missed. First, the overarching goals are broken down into specific, answerable questions along with the required observations and the so-called Science Activity Plan (SAP) is developed to achieve this. The SAP groups objectives that require similar observations into Solar Orbiter Observing Plans, resulting in a strategic, top-level view of the optimal opportunities for science observations during the mission lifetime. This allows for all four mission goals to be addressed. In this paper, we introduce Solar Orbiter’s SAP through a series of examples and the strategy being followed.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 642 ( 2020-10), p. A6-
    Abstract: Context. To meet the scientific objectives of the mission, the Solar Orbiter spacecraft carries a suite of in-situ (IS) and remote sensing (RS) instruments designed for joint operations with inter-instrument communication capabilities. Indeed, previous missions have shown that the Sun (imaged by the RS instruments) and the heliosphere (mainly sampled by the IS instruments) should be considered as an integrated system rather than separate entities. Many of the advances expected from Solar Orbiter rely on this synergistic approach between IS and RS measurements. Aims. Many aspects of hardware development, integration, testing, and operations are common to two or more RS instruments. In this paper, we describe the coordination effort initiated from the early mission phases by the Remote Sensing Working Group. We review the scientific goals and challenges, and give an overview of the technical solutions devised to successfully operate these instruments together. Methods. A major constraint for the RS instruments is the limited telemetry (TM) bandwidth of the Solar Orbiter deep-space mission compared to missions in Earth orbit. Hence, many of the strategies developed to maximise the scientific return from these instruments revolve around the optimisation of TM usage, relying for example on onboard autonomy for data processing, compression, and selection for downlink. The planning process itself has been optimised to alleviate the dynamic nature of the targets, and an inter-instrument communication scheme has been implemented which can be used to autonomously alter the observing modes. We also outline the plans for in-flight cross-calibration, which will be essential to the joint data reduction and analysis. Results. The RS instrument package on Solar Orbiter will carry out comprehensive measurements from the solar interior to the inner heliosphere. Thanks to the close coordination between the instrument teams and the European Space Agency, several challenges specific to the RS suite were identified and addressed in a timely manner.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 642 ( 2020-10), p. A14-
    Abstract: Aims. The Spectral Imaging of the Coronal Environment (SPICE) instrument is a high-resolution imaging spectrometer operating at extreme ultraviolet wavelengths. In this paper, we present the concept, design, and pre-launch performance of this facility instrument on the ESA/NASA Solar Orbiter mission. Methods. The goal of this paper is to give prospective users a better understanding of the possible types of observations, the data acquisition, and the sources that contribute to the instrument’s signal. Results. The paper discusses the science objectives, with a focus on the SPICE-specific aspects, before presenting the instrument’s design, including optical, mechanical, thermal, and electronics aspects. This is followed by a characterisation and calibration of the instrument’s performance. The paper concludes with descriptions of the operations concept and data processing. Conclusions. The performance measurements of the various instrument parameters meet the requirements derived from the mission’s science objectives. The SPICE instrument is ready to perform measurements that will provide vital contributions to the scientific success of the Solar Orbiter mission.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Solar Physics, Springer Science and Business Media LLC, Vol. 162, No. 1-2 ( 1995-12), p. 233-290
    Type of Medium: Online Resource
    ISSN: 0038-0938 , 1573-093X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 1995
    detail.hit.zdb_id: 2211848-2
    detail.hit.zdb_id: 1473830-2
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 677 ( 2023-09), p. A130-
    Abstract: Context. The Solar Orbiter mission completed its first remote-sensing observation windows in the spring of 2022. On 2 April 2022, an M-class flare followed by a filament eruption was seen both by the instruments on board the mission and from several observatories in Earth’s orbit, providing an unprecedented view of a flaring region with a large range of observations. Aims. We aim to understand the nature of the flaring and filament eruption events via the analysis of the available dataset. The complexity of the observed features is compared with the predictions given by the standard flare model in 3D. Methods. In this paper, we use the observations from a multi-view dataset, which includes extreme ultraviolet (EUV) imaging to spectroscopy and magnetic field measurements. These data come from the Interface Region Imaging Spectrograph, the Solar Dynamics Observatory, Hinode, as well as several instruments on Solar Orbiter. Results. The large temporal coverage of the region allows us to analyse the whole sequence of the filament eruption starting with its pre-eruptive state. Information given by spectropolarimetry from SDO/HMI and Solar Orbiter PHI/HRT shows that a parasitic polarity emerging underneath the filament is responsible for bringing the flux rope to an unstable state. As the flux rope erupts, Hinode EIS captures blue-shifted emission in the transition region and coronal lines in the northern leg of the flux rope prior to the flare peak. This may be revealing the unwinding of one of the flux rope legs. At the same time, Solar Orbiter SPICE captures the whole region, complementing the Doppler diagnostics of the filament eruption. Analyses of the formation and evolution of a complex set of flare ribbons and loops, of the hard and soft X-ray emissions with STIX, show that the parasitic emerging bipole plays an important role in the evolution of the flaring region. Conclusions. The extensive dataset covering this M-class flare event demonstrates how important multiple viewpoints and varied observations are in order to understand the complexity of flaring regions. While the analysed data are overall consistent with the standard flare model, the present particular magnetic configuration shows that surrounding magnetic activity such as nearby emergence needs to be taken into account to fully understand the processes at work. This filament eruption is the first to be covered from different angles by spectroscopic instruments, and provides an unprecedented diagnostic of the multi-thermal structures present before and during the flare. This complete dataset of an eruptive event showcases the capabilities of coordinated observations with the Solar Orbiter mission.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Experimental Astronomy, Springer Science and Business Media LLC, Vol. 33, No. 2-3 ( 2012-4), p. 271-303
    Type of Medium: Online Resource
    ISSN: 0922-6435 , 1572-9508
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2012
    detail.hit.zdb_id: 2012330-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 1991
    In:  Solar Physics Vol. 136, No. 1 ( 1991-11), p. 89-104
    In: Solar Physics, Springer Science and Business Media LLC, Vol. 136, No. 1 ( 1991-11), p. 89-104
    Type of Medium: Online Resource
    ISSN: 0038-0938 , 1573-093X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 1991
    detail.hit.zdb_id: 2211848-2
    detail.hit.zdb_id: 1473830-2
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 642 ( 2020-10), p. A1-
    Abstract: Aims. Solar Orbiter, the first mission of ESA’s Cosmic Vision 2015–2025 programme and a mission of international collaboration between ESA and NASA, will explore the Sun and heliosphere from close up and out of the ecliptic plane. It was launched on 10 February 2020 04:03 UTC from Cape Canaveral and aims to address key questions of solar and heliospheric physics pertaining to how the Sun creates and controls the Heliosphere, and why solar activity changes with time. To answer these, the mission carries six remote-sensing instruments to observe the Sun and the solar corona, and four in-situ instruments to measure the solar wind, energetic particles, and electromagnetic fields. In this paper, we describe the science objectives of the mission, and how these will be addressed by the joint observations of the instruments onboard. Methods. The paper first summarises the mission-level science objectives, followed by an overview of the spacecraft and payload. We report the observables and performance figures of each instrument, as well as the trajectory design. This is followed by a summary of the science operations concept. The paper concludes with a more detailed description of the science objectives. Results. Solar Orbiter will combine in-situ measurements in the heliosphere with high-resolution remote-sensing observations of the Sun to address fundamental questions of solar and heliospheric physics. The performance of the Solar Orbiter payload meets the requirements derived from the mission’s science objectives. Its science return will be augmented further by coordinated observations with other space missions and ground-based observatories.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 642 ( 2020-10), p. A4-
    Abstract: Context. The launch of Parker Solar Probe (PSP) in 2018, followed by Solar Orbiter (SO) in February 2020, has opened a new window in the exploration of solar magnetic activity and the origin of the heliosphere. These missions, together with other space observatories dedicated to solar observations, such as the Solar Dynamics Observatory, Hinode, IRIS, STEREO, and SOHO, with complementary in situ observations from WIND and ACE, and ground based multi-wavelength observations including the DKIST observatory that has just seen first light, promise to revolutionize our understanding of the solar atmosphere and of solar activity, from the generation and emergence of the Sun’s magnetic field to the creation of the solar wind and the acceleration of solar energetic particles. Aims. Here we describe the scientific objectives of the PSP and SO missions, and highlight the potential for discovery arising from synergistic observations. Here we put particular emphasis on how the combined remote sensing and in situ observations of SO, that bracket the outer coronal and inner heliospheric observations by PSP, may provide a reconstruction of the solar wind and magnetic field expansion from the Sun out to beyond the orbit of Mercury in the first phases of the mission. In the later, out-of-ecliptic portions of the SO mission, the solar surface magnetic field measurements from SO and the multi-point white-light observations from both PSP and SO will shed light on the dynamic, intermittent solar wind escaping from helmet streamers, pseudo-streamers, and the confined coronal plasma, and on solar energetic particle transport. Methods. Joint measurements during PSP–SO alignments, and magnetic connections along the same flux tube complemented by alignments with Earth, dual PSP–Earth, and SO-Earth, as well as with STEREO-A, SOHO, and BepiColumbo will allow a better understanding of the in situ evolution of solar-wind plasma flows and the full three-dimensional distribution of the solar wind from a purely observational point of view. Spectroscopic observations of the corona, and optical and radio observations, combined with direct in situ observations of the accelerating solar wind will provide a new foundation for understanding the fundamental physical processes leading to the energy transformations from solar photospheric flows and magnetic fields into the hot coronal plasma and magnetic fields and finally into the bulk kinetic energy of the solar wind and solar energetic particles. Results. We discuss the initial PSP observations, which already provide a compelling rationale for new measurement campaigns by SO, along with ground- and space-based assets within the synergistic context described above.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages