Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Genome Research, Cold Spring Harbor Laboratory, Vol. 26, No. 5 ( 2016-05), p. 717.2-717.2
    Type of Medium: Online Resource
    ISSN: 1088-9051 , 1549-5469
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2016
    detail.hit.zdb_id: 1483456-X
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 236-236
    Abstract: INTRODUCTION: Multiple myeloma is a heterogeneous disease featured by recurrent translocations involving the IgH region. Such cytogenetic events have a driver role in early transformation of a normal plasma cell into a MM cell. Although several studies have reported the presence of limited number of other structural chromosomal events using different approaches, including conventional cytogenetics, high-resolution genome mapping, interphase fluorescence in situ hybridization (FISH) and whole exome sequencing, the full catalogue of genomic rearrangements in MM samples has never been carried out systematically. Here, we have utilized whole-genome sequencing technologies to perform a systematic, genome-wide analysis to uncover the frequency and nature of rearrangements in MM. MATERIAL AND METHODS: We performed Whole genome sequencing (WGS) using the Illumina X10 platform in 68 serial samples from 30 patients including 11 patients with smoldering myeloma, 13 newly-diagnosed patients and 44 relapsed patient samples to provide further insight into evolution of rearrangements in MM. Structural variations (translocations, deletions, inversions, internal tandem duplications, fusions) and copy number changes were analyzed using the analysis pipeline at the Wellcome Trust Sanger Institute as recently described (Nik-Zainal Nature 2016). RESULTS: We observed a total of 1295 rearrangements for a median of 27 per sample (range 2-138) including a median of 6 (range 1-36) inversions, 5 (range 1-33) internal tandem duplications, 10 (range 1-40) deletions, 7 (range 1-32) translocations and 5 fusions (0-20). While the vast majority of events was non-recurrent, the high prevalence of rearrangements at smoldering stage and in myeloma at diagnosis and further increase at the time of relapse suggest a much more complex genomic landscape than previously thought. Translocations involving the IGH locus were identified including t(11;14) in 6 (20%), t(4;14) in 4 (13%) and t(8;14) in 3 (10%) of 30 unique patients. We also report frequent involvement by light chain loci in the rearrangements. The MYC locus was recurrently affected by non-IGH rearrangements in 11/30 (36%) patients. The other main MYC partners were IGL (4/30) and IGK (2/30), while about one-third of cases were involved by rearrangements not involving immunoglobulins or other obvious partners. MYC is therefore frequently involved by rearrangements through immunoglobulin-independent mechanisms. Interestingly, many regions affected by recurrent copy number abnormalities (CNAs) were associated with rearrangements. In particular 7/14 (50%) 1q gains and 6/8 (75%) 1p deletions were involved by translocations and inversions respectively (i.e Figure 1a). Overall 15/22 chromosome 1 CNAs were associated with a specific rearrangements. A similar association between copy number changes and rearrangement breakpoints was observed among other recurrent genomic aberrations such as 6q deletions (6/12, 50%), 8p deletions (4/7, 57%) and 16q deletions (7/13, 53%). In addition to deletions, inversions, internal tandem duplications (ITDs) and translocations, we observed at least one and often more regions of chromothripsis in 10/30 (33%) patients. Chromothripsis represents a complex event characterized by localized chromosome shattering and repair occurring in a one-off catastrophic event (Korbel J. et al. Cell 2013) (Figure 1b) and known to be associated with worse prognosis in MM. In our series, chromothriptic events were always conserved during every investigated evolution process: suggesting an early onset of this complex event in myelomagenesis. CONCLUSION: We report for the first time a comprehensive catalogue of rearrangements in MM based on whole-genome sequencing data. Our data provide evidence that the genomic landscape of rearrangements in MM is very complex and heterogeneous than speculated before and besides IgH involves number of other recurrent chromosomal alteration mechanisms. These diverse aberrations, in many cases acquired early, may deregulate oncogenes as illustrated by the MYC locus. Figure 1. Figure 1. Disclosures Moreau: Celgene: Honoraria; Amgen: Honoraria; Takeda: Honoraria; Janssen: Honoraria, Speakers Bureau; Novartis: Honoraria; Bristol-Myers Squibb: Honoraria. Avet-Loiseau:sanofi: Consultancy; celgene: Consultancy; amgen: Consultancy; janssen: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Genome Research, Cold Spring Harbor Laboratory, Vol. 25, No. 6 ( 2015-06), p. 814-824
    Abstract: Mitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane, intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically acquired mitochondrial-nuclear genome fusion sequences are present in cancer cells. Most occur in conjunction with intranuclear genomic rearrangements, and the features of the fusion fragments indicate that nonhomologous end joining and/or replication-dependent DNA double-strand break repair are the dominant mechanisms involved. Remarkably, mitochondrial-nuclear genome fusions occur at a similar rate per base pair of DNA as interchromosomal nuclear rearrangements, indicating the presence of a high frequency of contact between mitochondrial and nuclear DNA in some somatic cells. Transmission of mitochondrial DNA to the nuclear genome occurs in neoplastically transformed cells, but we do not exclude the possibility that some mitochondrial-nuclear DNA fusions observed in cancer occurred years earlier in normal somatic cells.
    Type of Medium: Online Resource
    ISSN: 1088-9051 , 1549-5469
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2015
    detail.hit.zdb_id: 1483456-X
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 345, No. 6196 ( 2014-08)
    Abstract: Long interspersed nuclear element–1 (L1) retrotransposons are mobile repetitive elements that are abundant in the human genome. L1 elements propagate through RNA intermediates. In the germ line, neighboring, nonrepetitive sequences are occasionally mobilized by the L1 machinery, a process called 3′ transduction. Because 3′ transductions are potentially mutagenic, we explored the extent to which they occur somatically during tumorigenesis. Studying cancer genomes from 244 patients, we found that tumors from 53% of the patients had somatic retrotranspositions, of which 24% were 3′ transductions. Fingerprinting of donor L1s revealed that a handful of source L1 elements in a tumor can spawn from tens to hundreds of 3′ transductions, which can themselves seed further retrotranspositions. The activity of individual L1 elements fluctuated during tumor evolution and correlated with L1 promoter hypomethylation. The 3′ transductions disseminated genes, exons, and regulatory elements to new locations, most often to heterochromatic regions of the genome.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2014
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 51, No. D1 ( 2023-01-06), p. D760-D766
    Abstract: The interpretation of genomic, transcriptomic and other microbial ‘omics data is highly dependent on the availability of well-annotated genomes. As the number of publicly available microbial genomes continues to increase exponentially, the need for quality control and consistent annotation is becoming critical. We present proGenomes3, a database of 907 388 high-quality genomes containing 4 billion genes that passed stringent criteria and have been consistently annotated using multiple functional and taxonomic databases including mobile genetic elements and biosynthetic gene clusters. proGenomes3 encompasses 41 171 species-level clusters, defined based on universal single copy marker genes, for which pan-genomes and contextual habitat annotations are provided. The database is available at http://progenomes.embl.de/
    Type of Medium: Online Resource
    ISSN: 0305-1048 , 1362-4962
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1472175-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Genome Biology Vol. 22, No. 1 ( 2021-12)
    In: Genome Biology, Springer Science and Business Media LLC, Vol. 22, No. 1 ( 2021-12)
    Abstract: Genomes are critical units in microbiology, yet ascertaining quality in prokaryotic genome assemblies remains a formidable challenge. We present GUNC (the Genome UNClutterer), a tool that accurately detects and quantifies genome chimerism based on the lineage homogeneity of individual contigs using a genome’s full complement of genes. GUNC complements existing approaches by targeting previously underdetected types of contamination: we conservatively estimate that 5.7% of genomes in GenBank, 5.2% in RefSeq, and 15–30% of pre-filtered “high-quality” metagenome-assembled genomes in recent studies are undetected chimeras. GUNC provides a fast and robust tool to substantially improve prokaryotic genome quality.
    Type of Medium: Online Resource
    ISSN: 1474-760X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2040529-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: mSystems, American Society for Microbiology, Vol. 6, No. 5 ( 2021-10-26)
    Abstract: Gut viruses are important, yet often neglected, players in the complex human gut microbial ecosystem. Recently, the number of human gut virome studies has been increasing; however, we are still only scratching the surface of the immense viral diversity. In this study, 254 virus-enriched fecal metagenomes from 204 Danish subjects were used to generate the D anish E nteric V ir o me C atalog (DEVoC) containing 12,986 nonredundant viral scaffolds, of which the majority was previously undescribed, encoding 190,029 viral genes. The DEVoC was used to compare 91 healthy DEVoC gut viromes from children, adolescents, and adults that were used to create the DEVoC. Gut viromes of healthy Danish subjects were dominated by phages. While most phage genomes (PGs) only occurred in a single subject, indicating large virome individuality, 39 PGs were present in more than 10 healthy subjects. Among these 39 PGs, the prevalences of three PGs were associated with age. To further study the prevalence of these 39 prevalent PGs, 1,880 gut virome data sets of 27 studies from across the world were screened, revealing several age-, geography-, and disease-related prevalence patterns. Two PGs also showed a remarkably high prevalence worldwide—a crAss-like phage (20.6% prevalence), belonging to the tentative AlphacrAssvirinae subfamily, and a previously undescribed circular temperate phage infecting Bacteroides dorei (14.4% prevalence), called LoVEphage because it encodes l ots o f v iral e lements. Due to the LoVEphage’s high prevalence and novelty, public data sets in which the LoVEphage was detected were de novo assembled, resulting in an additional 18 circular LoVEphage-like genomes (67.9 to 72.4 kb). IMPORTANCE Through generation of the DEVoC, we added numerous previously uncharacterized viral genomes and genes to the ever-increasing worldwide pool of human gut viromes. The DEVoC, the largest human gut virome catalog generated from consistently processed fecal samples, facilitated the analysis of the 91 healthy Danish gut viromes. Characterizing the biggest cohort of healthy gut viromes from children, adolescents, and adults to date confirmed the previously established high interindividual variation in human gut viromes and demonstrated that the effect of age on the gut virome composition was limited to the prevalence of specific phage (groups). The identification of a previously undescribed prevalent phage illustrates the usefulness of developing virome catalogs, and we foresee that the DEVoC will benefit future analysis of the roles of gut viruses in human health and disease.
    Type of Medium: Online Resource
    ISSN: 2379-5077
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 2844333-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 348, No. 6237 ( 2015-05-22), p. 880-886
    Abstract: How somatic mutations accumulate in normal cells is central to understanding cancer development but is poorly understood. We performed ultradeep sequencing of 74 cancer genes in small (0.8 to 4.7 square millimeters) biopsies of normal skin. Across 234 biopsies of sun-exposed eyelid epidermis from four individuals, the burden of somatic mutations averaged two to six mutations per megabase per cell, similar to that seen in many cancers, and exhibited characteristic signatures of exposure to ultraviolet light. Remarkably, multiple cancer genes are under strong positive selection even in physiologically normal skin, including most of the key drivers of cutaneous squamous cell carcinomas. Positively selected mutations were found in 18 to 32% of normal skin cells at a density of ~140 driver mutations per square centimeter. We observed variability in the driver landscape among individuals and variability in the sizes of clonal expansions across genes. Thus, aged sun-exposed skin is a patchwork of thousands of evolving clones with over a quarter of cells carrying cancer-causing mutations while maintaining the physiological functions of epidermis.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2015
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 2088-2088
    Abstract: INTRODUCTION: Symptomatic multiple myeloma (MM) is preceded by an indolent expansion of clonal plasma cells, known as monoclonal gammopathy of undetermined significance (MGUS) and/or smoldering MM (SMM). Despite initial efforts using karyotype, copy number arrays and whole exome sequencing, the full catalogue of genomic events associated with SMM/MGUS progression to MM has not been investigated before in a comprehensive way. MATERIALS AND METHODS: We utilized paired bone marrow samples collected from 11 patents at initial presentation (SMM n=10 and MGUS n= 1) and subsequently at the time of their progression to MM. DNA from purified CD138+ plasma cells from these samples along with a matched normal sample was subjected to whole genome sequencing (WGS) using HiSeq X Ten machine. Somatic mutations, structural variation and copy number changes were analyzed using standard analysis pipeline at the Wellcome Trust Sanger Institute. RESULTS: The total number of somatic variants (substitutions and indels) observed at the asymptomatic stage [5780 (range 2599-7760)] was not significantly different than what observed in the corresponding MM samples [5954 (ranges 2824-8227), p-value = 0.1] . Clonal mutations in driver genes such as NRAS, BRAF and DIS3 were found in SMM/MGUS samples, suggesting they can represent early lesions in MM pathogenesis. Similarly, IGH translocations (3/11), hyperdiploidy (7/11) and recurrent chromosomal aneuploidies (i.e del1p and gain 1q) were found at asymptomatic stage with similar frequencies to MM, suggesting that SMM may share many genomic features with MM. To have a reliable estimate of the evolution of the subclonal structure of samples we used a Bayesian hierarchical Dirichlet process after correcting the VAF for the percentage of contaminating normal cells (Bolli et al, Nature Comms 2014) to group mutations with similar adjusted VAF into clusters that reflect the sub-clonal composition of the tumor. Using this approach, we found that all patients presented one or more clusters of sub-clonal variants, reflecting spontaneous evolution of the disease before diagnosis, even in SMM/MGUS phases of the disease. In the 11 patients we observed two main patterns of progression to MM. In the first, the sub-clonal architecture shifted significantly because of loss of sub-clone(s) and gain of other(s), in a branching evolution pattern likely driven by spontaneous acquisition of new genetic lesions conferring competitive proliferative advantage to a previously minor sub-clone. In the second pattern, there was no change of the sub-clonal architecture of the sample despite a clinical progression to a symptomatic stage. Interestingly, the pattern of change of genomic rearrangements and copy number events was in broad concordance with that of point mutations, suggesting that these classes of events act in a concerted way during tumor evolution. Overall, we found that 7/11 SMM/MGUS progressed to MM showing spontaneous evolution of the subclonal structure of the tumor, and those where generally characterized by a longer time to progression as compared to samples showing no evolution. Interestingly, we did not observe any correlation between the total number of substitutions, rearrangements, indels, copy numbers changes and time to transformation. CONCLUSIONS: We observed two different models of SMM/MGUS progression to MM. Cases characterized by no significant change in the clonal architecture of the tumor likely represented disease which had already acquired the required mutational change/s for disease proliferation, where only time was needed for the disease to reach the burden required to manifest as clinically symptomatic disease. Early identification of such cases could provide a rationale for early treatment in the SMM phase that could be clinically beneficial. Conversely, cases showing subclonal change representing an example of spontaneous Darwinian evolution where the clinical progression is driven by spontaneous acquisition of further genomic lesions in competing subclones. Here, the effects of early treatment would have to be weighed against the risk of hastening the outgrowth of chemoresistant clones. Disclosures Munshi: OncoPep Inc.: Equity Ownership, Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 361, No. 6405 ( 2018-08-31)
    Abstract: Sarcomas are cancers of the bone and soft tissue often defined by gene fusions. Ewing sarcoma involves fusions between EWSR1 , a gene encoding an RNA binding protein, and E26 transformation-specific (ETS) transcription factors. We explored how and when EWSR1-ETS fusions arise by studying the whole genomes of Ewing sarcomas. In 52 of 124 (42%) of tumors, the fusion gene arises by a sudden burst of complex, loop-like rearrangements, a process called chromoplexy, rather than by simple reciprocal translocations. These loops always contained the disease-defining fusion at the center, but they disrupted multiple additional genes. The loops occurred preferentially in early replicating and transcriptionally active genomic regions. Similar loops forming canonical fusions were found in three other sarcoma types. Chromoplexy-generated fusions appear to be associated with an aggressive form of Ewing sarcoma. These loops arise early, giving rise to both primary and relapse Ewing sarcoma tumors, which can continue to evolve in parallel.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2018
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages