Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Lancet Respiratory Medicine, Elsevier BV, Vol. 5, No. 5 ( 2017-05), p. 412-425
    Type of Medium: Online Resource
    ISSN: 2213-2600
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 51, No. 6 ( 2019-6), p. 973-980
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 1494946-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2016
    In:  Geographica Helvetica Vol. 71, No. 3 ( 2016-08-17), p. 173-187
    In: Geographica Helvetica, Copernicus GmbH, Vol. 71, No. 3 ( 2016-08-17), p. 173-187
    Abstract: Abstract. During the Last Glacial Maximum (LGM), glaciers in the Alps reached a maximum extent, and broad sections of the foreland were covered by ice. In this study, we simulated the alpine ice cap using a glacier flow model to constrain the prevailing precipitation pattern with a geomorphological reconstruction of ice extent. For this purpose we forced the model using different temperature cooling and precipitation reduction factors. The use of the present-day precipitation pattern led to a systematic overestimation of the ice cover on the northern part of the Alps relative to the southern part. To reproduce the LGM ice cap, a more severe decrease in precipitation in the north than in the south was required. This result supports a southwesterly advection of atmospheric moisture to the Alps, sustained by a southward shift of the North Atlantic storm track during the LGM.
    Type of Medium: Online Resource
    ISSN: 2194-8798
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2487728-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Genome Research, Cold Spring Harbor Laboratory, Vol. 31, No. 2 ( 2021-02), p. 337-347
    Abstract: Understanding the changes in diverse molecular pathways underlying the development of breast tumors is critical for improving diagnosis, treatment, and drug development. Here, we used RNA-profiling of canine mammary tumors (CMTs) coupled with a robust analysis framework to model molecular changes in human breast cancer. Our study leveraged a key advantage of the canine model, the frequent presence of multiple naturally occurring tumors at diagnosis, thus providing samples spanning normal tissue and benign and malignant tumors from each patient. We showed human breast cancer signals, at both expression and mutation level, are evident in CMTs. Profiling multiple tumors per patient enabled by the CMT model allowed us to resolve statistically robust transcription patterns and biological pathways specific to malignant tumors versus those arising in benign tumors or shared with normal tissues. We showed that multiple histological samples per patient is necessary to effectively capture these progression-related signatures, and that carcinoma-specific signatures are predictive of survival for human breast cancer patients. To catalyze and support similar analyses and use of the CMT model by other biomedical researchers, we provide FREYA, a robust data processing pipeline and statistical analyses framework.
    Type of Medium: Online Resource
    ISSN: 1088-9051 , 1549-5469
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2021
    detail.hit.zdb_id: 1483456-X
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: BMJ Open, BMJ, Vol. 12, No. 6 ( 2022-06), p. e059919-
    Abstract: The use of Bispectral Index (BIS) monitors for assessing depth of sedation has led to a reduction in both the incidence of awareness and anaesthetic consumption in total intravenous anaesthesia. However, these monitors are vulnerable to artefacts. In addition to the processed number, the raw frontal electroencephalogram (EEG) can be displayed as a curve on the same monitor. Anaesthesia practitioners can learn to interpret the EEG in a short tutorial and may be quicker and more accurate thanBIS in assessing anaesthesia depth by recognising EEG patterns. We hypothesise that quality of recovery (QoR) in patients undergoing laparoscopic surgery is better, if propofol is titrated by anaesthesia practitioners able to interpret the EEG. Methods and analysis This is a multicentre, double-blind (patients and outcome assessors) randomised controlled trial taking place in four Swiss hospitals. Patients aged 18 years or older undergoing laparoscopic procedures with general anaesthesia using propofol and anaesthesia practitioners with more than 2 years experience will be eligible. The primary study outcome is the difference in QoR 24 hours after surgery. Secondary outcomes are propofol consumption, incidence of postoperative nausea and vomiting (PONV) and postoperative delirium. QoR and propofol consumption are compared between both groups using a two-sample t-test. Fisher’s exact test is used to compare the incidences of PONV and delirium. A total of 200 anaesthesia practitioners (and 200 patients) are required to have an 80% chance of detecting the minimum relevant difference for the QoR-15 as significant at the 5% level assuming a SD of 20. Ethics and dissemination Ethical approval has been obtained from all responsible ethics committees (lead committee: Ethikkommission Nordwest- und Zentralschweiz, 16 January 2021). The findings of the trial will be published in a peer-reviewed journal, presented at international conferences, and may lead to a change in titrating propofol in clinical practice. Trial registration number www.clinicaltrials.gov:NCT04105660
    Type of Medium: Online Resource
    ISSN: 2044-6055 , 2044-6055
    Language: English
    Publisher: BMJ
    Publication Date: 2022
    detail.hit.zdb_id: 2599832-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2017
    In:  Journal of Glaciology Vol. 63, No. 239 ( 2017-06), p. 487-498
    In: Journal of Glaciology, Cambridge University Press (CUP), Vol. 63, No. 239 ( 2017-06), p. 487-498
    Abstract: In this study, a modelling approach was used to investigate the cause of the diversion of erratic boulders from Mont Blanc and southern Valais by the Valais Glacier to the Solothurn lobe during the Last Glacial Maximum (LGM). Using the Parallel Ice Sheet Model, we simulated the ice flow field during the LGM, and analyzed the trajectories taken by erratic boulders from areas with characteristic lithologies. The main difficulty in this exercise laid with the large uncertainties affecting the paleo climate forcing required as input for the surface mass-balance model. In order to mimic the prevailing climate conditions during the LGM, we applied different temperature offsets and regional precipitation corrections to present-day climate data, and selected the parametrizations, which yielded the best match between the modelled ice extent and the geomorphologically-based ice-margin reconstruction. After running a range of simulations with varying parameters, our results showed that only one parametrization allowed boulders to be diverted to the Solothurn lobe during the LGM. This precipitation pattern supports the existing theory of preferential southwesterly advection of moisture to the alps during the LGM, but also indicates strongly enhanced precipitation over the Mont Blanc massif and enhanced cooling over the Jura Mountains.
    Type of Medium: Online Resource
    ISSN: 0022-1430 , 1727-5652
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2017
    detail.hit.zdb_id: 2140541-4
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: The Cryosphere, Copernicus GmbH, Vol. 11, No. 2 ( 2017-04-12), p. 911-921
    Abstract: Abstract. In this paper, we analyse the calving activity of the Bowdoin Glacier, north-western Greenland, in 2015 by combining satellite images, UAV (unmanned aerial vehicle) photogrammetry and ice flow modelling. In particular, a high-resolution displacement field is inferred from UAV orthoimages taken immediately before and after the initiation of a large fracture, which induced a major calving event. A detailed analysis of the strain rate field allows us to accurately map the path taken by the opening crack. Modelling results reveal (i) that the crack was more than half-thickness deep, filled with water and getting irreversibly deeper when it was captured by the UAV and (ii) that the crack initiated in an area of high horizontal shear caused by a local basal bump immediately behind the current calving front. The asymmetry of the bed at the front explains the systematic calving pattern observed in May and July–August 2015. As a corollary, we infer that the calving front of the Bowdoin Glacier is currently stabilized by this bedrock bump and might enter into an unstable mode and retreat rapidly if the glacier keeps thinning in the coming years. Beyond this outcome, our study demonstrates that the combination of UAV photogrammetry and ice flow modelling is a promising tool to horizontally and vertically track the propagation of fractures responsible for large calving events.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2393169-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Copernicus GmbH ; 2018
    In:  The Cryosphere Vol. 12, No. 10 ( 2018-10-10), p. 3265-3285
    In: The Cryosphere, Copernicus GmbH, Vol. 12, No. 10 ( 2018-10-10), p. 3265-3285
    Abstract: Abstract. The European Alps, the cradle of pioneering glacial studies, are one of the regions where geological markers of past glaciations are most abundant and well-studied. Such conditions make the region ideal for testing numerical glacier models based on simplified ice flow physics against field-based reconstructions and vice versa. Here, we use the Parallel Ice Sheet Model (PISM) to model the entire last glacial cycle (120–0 ka) in the Alps, using horizontal resolutions of 2 and 1 km. Climate forcing is derived using two sources: present-day climate data from WorldClim and the ERA-Interim reanalysis; time-dependent temperature offsets from multiple palaeo-climate proxies. Among the latter, only the European Project for Ice Coring in Antarctica (EPICA) ice core record yields glaciation during marine oxygen isotope stages 4 (69–62 ka) and 2 (34–18 ka). This is spatially and temporally consistent with the geological reconstructions, while the other records used result in excessive early glacial cycle ice cover and a late Last Glacial Maximum. Despite the low variability of this Antarctic-based climate forcing, our simulation depicts a highly dynamic ice sheet, showing that Alpine glaciers may have advanced many times over the foreland during the last glacial cycle. Ice flow patterns during peak glaciation are largely governed by subglacial topography but include occasional transfluences through the mountain passes. Modelled maximum ice surface is on average 861 m higher than observed trimline elevations in the upper Rhône Valley, yet our simulation predicts little erosion at high elevation due to cold-based ice. Finally, despite the uniform climate forcing, differencesin glacier catchment hypsometry produce a time-transgressive Last Glacial Maximum advance, with some glaciers reaching their modelled maximum extent as early as 27 ka and others as late as 21 ka.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2393169-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2022
    In:  Journal of the American Society of Nephrology Vol. 33, No. 6 ( 2022-06), p. 1208-1221
    In: Journal of the American Society of Nephrology, Ovid Technologies (Wolters Kluwer Health), Vol. 33, No. 6 ( 2022-06), p. 1208-1221
    Abstract: Although membranous nephropathy (MN) is one of the most common causes of nephrotic syndrome, the molecular characteristics of the kidney damage in MN remain poorly defined. In this study, the authors applied a machine-learning framework to predict diagnosis on the basis of gene expression in microdissected kidney tissue from patients with glomerulonephropathies. They found that MN has a glomerular transcriptional signature that distinguishes it from other glomerulonephropathies and identified a set of MN-specific genes differentially expressed across two independent cohorts and robustly recovered in an additional validation cohort. They also found the MN-specific genes are enriched in targets of transcription factor NF-κB and are predominantly expressed in podocytes. This work provides a molecular snapshot of MN and elucidates transcriptional alterations specific to this disease. Background Molecular characterization of nephropathies may facilitate pathophysiologic insight, development of targeted therapeutics, and transcriptome-based disease classification. Although membranous nephropathy (MN) is a common cause of adult-onset nephrotic syndrome, the molecular pathways of kidney damage in MN require further definition. Methods We applied a machine-learning framework to predict diagnosis on the basis of gene expression from the microdissected kidney tissue of participants in the Nephrotic Syndrome Study Network (NEPTUNE) cohort. We sought to identify differentially expressed genes between participants with MN versus those of other glomerulonephropathies across the NEPTUNE and European Renal cDNA Bank (ERCB) cohorts, to find MN-specific gene modules in a kidney-specific functional network, and to identify cell-type specificity of MN-specific genes using single-cell sequencing data from reference nephrectomy tissue. Results Glomerular gene expression alone accurately separated participants with MN from those with other nephrotic syndrome etiologies. The top predictive classifier genes from NEPTUNE participants were also differentially expressed in the ERCB participants with MN. We identified a signature of 158 genes that are significantly differentially expressed in MN across both cohorts, finding 120 of these in a validation cohort. This signature is enriched in targets of transcription factor NF-κB. Clustering these MN-specific genes in a kidney-specific functional network uncovered modules with functional enrichments, including in ion transport, cell projection morphogenesis, regulation of adhesion, and wounding response. Expression data from reference nephrectomy tissue indicated 43% of these genes are most highly expressed by podocytes. Conclusions These results suggest that, relative to other glomerulonephropathies, MN has a distinctive molecular signature that includes upregulation of many podocyte-expressed genes, provides a molecular snapshot of MN, and facilitates insight into MN’s underlying pathophysiology.
    Type of Medium: Online Resource
    ISSN: 1046-6673 , 1533-3450
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2022
    detail.hit.zdb_id: 2029124-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 2504-2504
    Abstract: Malignancy in cancer is a consequence of the progressive accumulation of mutations in a tumor, with profound implications for drug selection and treatment. However, in human studies, inter-patient variability obscures molecular signatures of tumor progression because patients usually present with a single mammary tumor. In contrast, dogs frequently exhibit multiple naturally occurring mammary tumors in the same individual. Moreover, canine mammary tumors (CMTs) and human breast cancer have similar histopathological profiles and clinical presentation. We leverage the CMT model to elucidate genome-wide molecular changes clinically relevant in human breast cancer, focusing on signals underlying tumor development. We develop a robust, generally applicable, computational analysis framework (FREYA) for analysis of CMTs for comparative oncology. Using FREYA, we RNA profile 89 samples from 16 dogs, and demonstrate that CMTs recapitulate human breast cancer subtypes. We then extract molecular profiles of breast cancer progression at three distinct stages (normal, pre-malignant and malignant) and identify signatures of gene expression reflective of tumor progression. Focusing on the transitions to malignancy, we identify transcriptional patterns and biological pathways specific to malignant tumors and distinct from those characterizing pre-malignant tumors or normal tissue. We find that human breast cancer patients whose tumors exhibit strong CMT malignancy signatures have significantly decreased survival, indicative of the importance of the tumor progression processes identified in CMTs to human breast cancer prognosis. Altogether, our comprehensive genomic characterization demonstrates that CMTs are a powerful translational model of breast cancer, providing insights that inform our understanding of tumor development in humans. To catalyze and support similar analyses and use of the CMT model by other biomedical researchers, we publicly share all of our data and provide FREYA, a robust data processing pipeline and statistical analyses framework, at freya.flatironinstitute.org. Citation Format: Kiley Graim, Dmitriy Gorenshteyn, David G. Robinson, Nicholas J. Carriero, James Cahill, Rumela Chakrabarti, Michael H. Goldschmidt, Amy C. Durham, Julien Funk, John D. Storey, Vessela N. Kristensen, Chandra L. Theesfeld, Karin U. Sorenmo, Olga G. Troyanskaya. Modeling molecular development of breast cancer in canine mammary tumors [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 2504.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages