Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 111, No. 3 ( 2008-02-01), p. 1437-1447
    Abstract: T- and natural killer (NK)–cell immunosuppression associated with ζ-chain down-regulation has been described in cancer, autoimmune, and infectious diseases. However, the precise stimuli leading to this bystander phenomenon in such different pathogen-dependent and sterile pathologies remained unresolved. Here, we demonstrate that Toll-like receptors (TLRs) play a major role in the induction of innate and adaptive immune system suppression; repetitive administration of single TLR 2, 3, 4, or 9 agonists, which do not exhibit any virulent or immune invasive properties, was sufficient to induce a bystander NK- and T-cell immunosuppression associated with ζ-chain down-regulation mediated by myeloid suppressor cells, as observed in the course of active pathologies. We identified a 35-amino acid (aa) region within the ζ-chain as being responsible for its degradation under TLR-mediated chronic inflammation. Furthermore, we provide evidence that ζ-chain levels could serve as a biomarker for chronic inflammation-dependent immunosuppression. Thus, although acute TLR-mediated activation could be beneficial in clearing pathogens or may serve as an immune adjuvant, such activation could be detrimental under sustained conditions.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 114, No. 22 ( 2009-11-20), p. 1963-1963
    Abstract: Abstract 1963 Poster Board I-986 Background: Multiple Myeloma (MM), a cancer of plasma cells is characterized by frequent chromosomal alterations. Deletion of chromosome 13, especially band 13q14, is commonly observed in early stages of MM, suggesting the presence of tumor suppressor genes within this region. When studied in the context of CLL, the miR 15a and 16-1 cluster was associated with a distinct miR signature and clinical outcome. Over-expression of miR16 caused induction of apoptosis and downregulation of the anti apoptotic gene BCL2 in a megakaryocytic leukemia cell line and induced growth arrest in MM cells. Nonetheless, being lost in CLL, MM, MCL and LPL, their functional role has not been studied using a loss-of-function approach in any of these lymphoid malignancies. Here, we describe the generation of an in vivo system for the long term, stable knockdown of miR 15a/ 16-1 expression in myeloma cells to recapitulate the conditions seen in chromosome 13q14 deleted MM. Methods: Using lentiviral vectors to stably express a competitive sponge miR16 inhibitor we set up a system to functionally validate the role of microRNA 15a/16-1 cluster. Pure populations of lentivirally transduced MM cell lines were sorted by flow cytometry using GFP marker. Decreased miRs 15a and 16 expression levels were assessed by Northern blot and R-luciferase reporter system. Cell growth rate was measured using trypan blue counting, and thymidine incorporation. Cell cycle analysis was measured by flow cytometry after staining with PI. Intracellular signal modulation was demonstrated by Western blotting. RNA from MM cell lines expressing the control sponge or sponge16 were hybridized on an Affymetrix U133A 2.0 array chip, and validated using quantitative real time PCR. Xenograft murine models were performed using the stable MM cell lines injected into 6-week old NOD.CB17-PrkdcSCID/J irradiated mice. Results: Selected stable miR knockdown MM cell lines exhibited significantly reduced expression of miRs15a/16-1 as assessd by both by mRNA levels and miR luciferase reporter assays. The knockdown cells showed a significant increase in growth rates (1.5-2 fold) compared to control cells, as measured by viable cell counts and proliferation by thymidine incorporation in vitro. Importantly, miR16 inhibition decreased animal survival in a xenograft model of MM by increasing tumor load, invasiveness and host angiogenesis. To further delineate the role of miR15a/16 in MM and to gain additional insight into the possible target genes regulated by this cluster, we performed gene expression-profiling analysis in controls and miR16 deficient MMS1 and RPMI cell lines. Since our sponge system produces downregulation of the miRs, we focused on the upregulated probes. Expression profiling analysis of miR16 deficient cells identified a surprisingly large number of downstream target-genes such as FGFR1, PI3KCa, MDM4, VEGFa, as well as secondary affected genes such as JUN and Jag1. These results were verified both at the mRNA level and the protein level, as well as in other MM cell lines. Moreover, we were able to show that these knockdown cells were partially addicted to some of these pathways using specific drug inhibitors. We further validated designated genes as direct miR16 targets by showing binding sites within the conserved 3' UTR and also within the mRNA coding region, thus indicating that the miRs may have many more possible targets than anticipated by conventional prediction methods. Conclusions: Using this loss-of-function system, which mimics the pleiotropic chronic effects of microRNA loss at the 13q chromosomal deletion, provides a valuable tool to investigate their function as tumor suppressor genes in MM pathogenesis, affecting multiple targets, and may represent a novel potential for therapeutic targeting in MM and other lymphoid malignancies. Disclosures: Munshi: Seattle Genetics, Inc.: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Molecules Vol. 25, No. 20 ( 2020-10-21), p. 4850-
    In: Molecules, MDPI AG, Vol. 25, No. 20 ( 2020-10-21), p. 4850-
    Abstract: Receptor tyrosine kinases (RTKs) are major players in signal transduction, regulating cellular activities in both normal regeneration and malignancy. Thus, many RTKs, c-Kit among them, play key roles in the function of both normal and neoplastic cells, and as such constitute attractive targets for therapeutic intervention. We thus sought to manipulate the self-association of stem cell factor (SCF), the cognate ligand of c-Kit, and hence its suboptimal affinity and activation potency for c-Kit. To this end, we used directed evolution to engineer SCF variants having different c-Kit activation potencies. Our yeast-displayed SCF mutant (SCFM) library screens identified altered dimerization potential and increased affinity for c-Kit by specific SCF-variants. We demonstrated the delicate balance between SCF homo-dimerization, c-Kit binding, and agonistic potencies by structural studies, in vitro binding assays and a functional angiogenesis assay. Importantly, our findings showed that a monomeric SCF variant exhibited superior agonistic potency vs. the wild-type SCF protein and vs. other high-affinity dimeric SCF variants. Our data showed that action of the monomeric ligands in binding to the RTK monomers and inducing receptor dimerization and hence activation was superior to that of the wild-type dimeric ligand, which has a higher affinity to RTK dimers but a lower activation potential. The findings of this study on the binding and c-Kit activation of engineered SCF variants thus provides insights into the structure–function dynamics of ligands and RTKs.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2008644-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Experimental Hematology, Elsevier BV, Vol. 88 ( 2020-08), p. S75-
    Type of Medium: Online Resource
    ISSN: 0301-472X
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 2005403-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Elsevier BV ; 2019
    In:  Experimental Hematology Vol. 76 ( 2019-08), p. S67-
    In: Experimental Hematology, Elsevier BV, Vol. 76 ( 2019-08), p. S67-
    Type of Medium: Online Resource
    ISSN: 0301-472X
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 2005403-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Elsevier BV ; 2021
    In:  Experimental Hematology Vol. 100 ( 2021-08), p. S74-
    In: Experimental Hematology, Elsevier BV, Vol. 100 ( 2021-08), p. S74-
    Type of Medium: Online Resource
    ISSN: 0301-472X
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 2005403-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Elsevier BV ; 2018
    In:  Experimental Hematology Vol. 64 ( 2018-08), p. S67-
    In: Experimental Hematology, Elsevier BV, Vol. 64 ( 2018-08), p. S67-
    Type of Medium: Online Resource
    ISSN: 0301-472X
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 2005403-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Elsevier BV ; 2022
    In:  Experimental Hematology Vol. 111 ( 2022), p. S87-S88
    In: Experimental Hematology, Elsevier BV, Vol. 111 ( 2022), p. S87-S88
    Type of Medium: Online Resource
    ISSN: 0301-472X
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 2005403-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    The American Association of Immunologists ; 2010
    In:  The Journal of Immunology Vol. 184, No. 10 ( 2010-05-15), p. 5637-5644
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 184, No. 10 ( 2010-05-15), p. 5637-5644
    Abstract: NK cells interact with a wide variety of hazardous cells including pathogen-infected and tumor cells. NKp46 is a specific NK killer receptor that recognizes various influenza hemagglutinins and unknown tumor ligands. It was recently shown that NKp46 plays a significant role in the in vivo eradication of tumor cells; however, the role played by NKp46 in vivo with regard to tumor development is still unclear. In this study, we used the 3-methylcholanthrene (MCA)-induced fibrosarcoma model in NKp46-deficient mice to test the NKp46 recognition of carcinogen-induced tumors. We show that although the rate of MCA-induced tumor formation was similar in the presence and in the absence of NKp46, the expression of its unknown ligands was NKp46 dependent. The unknown NKp46 ligands were nearly absent in tumors that originated in wild-type mice, whereas they were detected in tumors that originated in the NKp46-deficient mice. We demonstrate that the interactions between NKp46 and its MCA tumor-derived ligands lead to the secretion of IFN-γ but not to the elimination of the MCA-derived tumor cells. In addition, we show that the in vivo growth of MCA-derived tumor cells expressing high levels of the NKp46 ligands is NKp46 and IFN-γ dependent. Thus, we present in this study a novel NKp46-mediated mechanism of tumor editing.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2010
    detail.hit.zdb_id: 1475085-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Cells Vol. 11, No. 3 ( 2022-01-20), p. 350-
    In: Cells, MDPI AG, Vol. 11, No. 3 ( 2022-01-20), p. 350-
    Abstract: Myeloid progenitors are intermediates between Hematopoietic Stem Cells (HSCs) and Myeloid effector progeny. In mouse bone marrow, they are part of the Lineage− cKit+ Sca1− (LK) compartment. To date, most researchers used CD34 and FcγR surface markers for the dissection of this compartment into various populations. Surprisingly, however, this approach does not provide distinct separation by fluorescence-activated cell sorting (FACS). In this study, we suggest using CD150 instead of FcγR. We re-analyzed published single-cell RNA-Seq data and found that CD34/CD150 provides better sub-populations separation, compared to the “classical” CD34/FcγR-based approach. We confirm our findings by independent FACS analysis. We demonstrate comparable differentiation potential of the newly-obtained LK sub-populations, like previous “classical” ones. Therefore, we suggest the CD34/CD150 gating strategy, utilizing commonly-used surface markers, as a robust and reproducible separation of the LK compartment into distinct sub-populations.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2661518-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages