In:
Scientific Reports, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2021-10-12)
Abstract:
Solid-state sodium ion batteries are frequently referred to as the most promising technology for next-generation energy storage applications. However, developing a suitable solid electrolyte with high ionic conductivity, excellent electrolyte–electrode interfaces, and a wide electrochemical stability window, remains a major challenge. Although solid-polymer electrolytes have attracted great interest due to their low cost, low density and very good processability, they generally have significantly lower ionic conductivity and poor mechanical strength. Here, we report on the development of a low-cost composite solid polymer electrolyte comprised of poly(ethylene oxide), poly(vinylpyrrolidone) and sodium hexafluorophosphate, mixed with indium arsenide nanowires. We show that the addition of 1.0% by weight of indium arsenide nanowires increases the sodium ion conductivity in the polymer to 1.50 × 10 −4 Scm −1 at 40 °C. In order to explain this remarkable characteristic, we propose a new transport model in which sodium ions hop between close-spaced defect sites present on the surface of the nanowires, forming an effective complex conductive percolation network. Our work represents a significant advance in the development of novel solid polymer electrolytes with embedded engineered ultrafast 1D percolation networks for near-future generations of low-cost, high-performance batteries with excellent energy storage capabilities.
Type of Medium:
Online Resource
ISSN:
2045-2322
DOI:
10.1038/s41598-021-99663-5
Language:
English
Publisher:
Springer Science and Business Media LLC
Publication Date:
2021
detail.hit.zdb_id:
2615211-3
Bookmarklink