Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 14, No. 12_Supplement_2 ( 2015-12-01), p. C26-C26
    Abstract: Breast cancer is the second most common cancer in the world and the most frequent cancer among women. Despite the progress in developing breast cancer therapies, approximately, 15% of all breast cancers are diagnosed as triple negative breast cancer (TNBC) and due to the lack of estrogen and progesterone receptors this subgroup of patients remains difficult to treat with hormonal therapies. Additionally, therapies targeting HER2, such as Herceptin, are also inefficient against TNBC. In recent years, maternal embryonic leucine zipper kinase (MELK) has been identified as a novel oncogenic target that is highly expressed in several types of solid cancers: breast (especially triple negative breast cancer), colon, ovary, lung, and brain and present at low levels in normal tissues. MELK overexpression in patient tumors strongly correlates with poor prognosis in glioblastoma and breast cancer. siRNA mediated knockdown of MELK kinase significantly inhibits growth of tumor cell lines both in vitro and in vivo. Therefore, MELK kinase is emerging as a novel and interesting target with significant potential for therapeutic intervention in cancer. MELK is an atypical member of the AMPK family of serine-threonine kinases that been implicated has been implicated in stem cell renewal, cell cycle progression, cytokinesis, mRNA splicing and apoptosis. Its activity is correlated with its phosphorylation level, is cell cycle dependent, and maximal during mitosis although direct upstream regulators of MELK kinase activity are unknown. Despite the fact that the exact function is currently under investigation, selective targeting of MELK may be an effective cancer treatment strategy in a wide range of solid tumors. In this study, we are reporting development of a series of selective MELK kinase inhibitors. Synthesized compounds exert excellent selectivity and potency in MELK inhibition in a low nanomolar range. Therapeutic effect of the compounds was investigated in the panel of breast cancer cell lines with different genetic background as well as with different MELK kinase levels; it was shown that for some cell lines compounds induced cell death with nanomolar ED50 values. The compound's effect on the proliferation and in the colony formation assay was also investigated. Taken altogether, the presented data supports our rationale of using MELK kinase inhibitors as a novel approach for the cancer therapy. Citation Format: Piotr Kowalczyk, Paulina Węgrzyn, Monika Prokopowicz, Martyna Knop, Karolina Mazur, Katarzyna Dziedzic, Karolina Gluza, Martyna Knop, Katarzyna Dziedzic, Karolina Mazur, Adam Radzimierski, Claude Commandeur, Magdalena Zawadzka, Kristjan Bloudoff, Fred Vaillancourt, Nick Larsen, John Wang, Dom Reynolds, Daisuke Ito, Jian Zou, Michelle Aicher, Pete Smith, Ping Zhu, Krzysztof Brzózka. Development of selective MELK kinase inhibitors for breast cancer treatment. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2015 Nov 5-9; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2015;14(12 Suppl 2):Abstract nr C26.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 4983-4983
    Abstract: Accumulating evidence highlights an important role of type I interferon response in the immune surveillance mechanisms. IFNβ release by antigen-presenting cells promotes spontaneous anti-tumor CD8+ T cell priming being largely dependent on activation of Stimulator of Interferon Genes (STING). STING agonists promote regression of established tumors and generation of long-term immunologic memory in preclinical animal models. Herein we report the discovery of potent and selective, first-in-class non-nucleotide, non-macrocyclic, small molecule direct STING agonists with molecular weight below 500, structurally unrelated to known cyclic dinucleotide chemotypes with potential for systemic administration. Activation of STING pathway was monitored in THP-1 Dual reporter monocytic cell line as well as peripheral blood mononuclear cells (PBMC) or antigen presenting cells from human and mouse origin. Surface expression of the antigen-presenting cell maturation markers i.e. CD80, CD86, CD83 and HLA-DR was assessed by flow cytometry. Binding affinity was confirmed by three independent assays. RNA sequencing was performed on total RNA isolated from THP-1 cells and PBMC isolated from 2 healthy human donors. Direct binding to both mouse and human STING protein of Selvita agonists have been confirmed in biophysical binding assays (FTS, MST and FP) and by crystallography studies. The compounds have fine-tunable ADME properties with good solubility, permeability and human plasma stability. They selectively activates STING-dependent signaling in both THP-1 reporter assays and in primary cells of human and mouse origin. In addition, RNA sequencing data confirmed selectivity of the Selvita compounds. In vitro functional assays demonstrated their ability to induce cytokine responses (IFNβ, TNFα) in a panel of human peripheral blood mononuclear cell (PBMC), human monocyte derived macrophage (HMDM) and human dendritic cells samples with various STING haplotypes including refractory alleles. Additionally, the compounds efficiently induced cytokine release in mouse bone marrow-derived macrophages and dendritic cells. Pro-inflammatory cytokine profile was accompanied by up-regulation of the maturation markers, i.e. CD80, CD86, CD83 and HLA-DR, on the surface of human antigen presenting cells. These data demonstrate potent, novel, next-generation small molecule STING agonists activating STING-dependent signaling in both mouse and human immune cells to promote potential antitumor immunity. The compounds show good selectivity and in vitro ADME properties enabling further development for systemic administration as a single agent or in combinatory immunotherapies for cancer treatment. Citation Format: Monika Dobrzańska, Stefan Chmielewski, Magdalena Zawadzka, Jolanta Mazurek, Karolina Gluza, Katarzyna Wójcik-Jaszczyńska, Maciej Kujawa, Grzegorz Topolnicki, Grzegorz Ćwiertnia, Aleksandra Poczkaj, Izabela Dolata, Magdalena Mroczkowska, Agnieszka Gibas, Marcin Leś, Sylwia Sudoł, Adam Radzimierski, Kinga Michalik, Magdalena Sieprawska-Lupa, Katarzyna Banaszak, Katarzyna Wiklik, Federico Malusa, Michał Combik, Karolina Wiatrowska, Agnieszka Adamus, Lukasz Dudek, Jose Alvarez, Charles Fabritius, Anna Rajda, Maciej Rogacki, Faustyna Gajdosz, Peter Littlewood, Luigi Stasi, Krzysztof Brzózka. Discovery and characterization of next-generation small molecule direct STING agonists [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 4983.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 3516-3516
    Abstract: Over-activation of the serine synthesis pathway, upregulation of SHMT2 has been described in over 20% of solid tumors (e.g. breast, lung, colorectal cancers). Such cancer cells are highly dependent on serine. Serine hydroxymethyltransferase (SHMT) plays a key role in a so-called one-carbon pathway, a group of biochemical reactions involved in amino acid metabolism. SHMT catalyzes the conversion of serine to glycine and also plays a role in the folate (vitamin B9) cycle. Antagonists of folate metabolism or antifolates are an established chemotherapy in certain cancers. Folate antagonism disrupts cell division, DNA/RNA synthesis and protein synthesis. Pemetrexed (for non-small cell lung carcinoma, mesothelioma) and methotreaxate (for autoimmune conditions like rheumatoid arthritis and certain cancers) are two well established and effective antifolates. The main drawback with antifolates in cancer treatment, however, is the development of resistance. In this study we report development of a series of small molecule SHMT1/2 inhibitors. Synthetized compounds exert potency in SHMT1/2 biochemical assay as well as in cellular assay (measured by the C13 serine to glycine conversion) with the low nanomolar range. Therapeutic effect of the compounds was investigated in the panel of cancer cell lines with different genetic background as well as with different SHMT2 levels. We identified several cell lines in which tested compounds inhibited cancer cell grow with nM GI50 values. Taken together, presented data supports our rationale for using SHMT1/2 inhibitors as a novel and interesting approach for the cancer therapy. Citation Format: Anna Bartosik, Pawel Guzik, Marta Sowinska, Karolina Gluza, Marcin Krol, Anna Wrobel, Agnieszka Dreas, Faustyna Iwanska, Magdalena Zastawna, Urszula Kulesza, Nicolas Boutard, David Schultz, Justyna Wujkowska, Karolina Pyziak, Agnieszka Sroka-Porada, Agnieszka Przybylowicz, Agnieszka Adamus, Magdalena Sieprawska-Lupa, Przemyslaw Golik, Piotr Kowalczyk, Krzysztof Brzozka, Tomasz Rzymski, Mateusz Nowak. Discovery of novel SHMT small molecule inhibitors for cancer treatment [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 3516.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Bioorganic & Medicinal Chemistry Letters, Elsevier BV, Vol. 29, No. 4 ( 2019-02), p. 607-613
    Type of Medium: Online Resource
    ISSN: 0960-894X
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 1501505-1
    SSG: 15,3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. 1280-1280
    Abstract: Background. Stimulator of interferon genes, known as STING, is an intracellular sensor of nucleic acids and one of key regulators in activating the innate immune response. Employing synthetic STING agonists has been shown to promote immune-mediated antitumor response in preclinical animal models. Ryvu is developing small-molecule STING agonists suitable for systemic administration. Herein we present unpublished results from characterization of the new generation of our agonist series with significantly improved potency on human immune cells. Methods. Binding to recombinant STING protein was examined using Fluorescence Thermal Shift and Fluorescence Polarisation and was confirmed by X-ray crystallography. Primary screen was performed in THP-1 Dual reporter cells and selectivity was confirmed in THP-1 reporter cells with knocked out STING or expressing varying STING variants. T cell viability and proliferation was assessed by flow cytometry using activated, human T cells exposed to STING agonists. STING pathway activation pattern in cells treated with Ryvu's molecules was confirmed using Western blot analysis. BALB/c mice were injected with compounds and the levels of cytokine release were measured in the plasma. Mice were inoculated with CT26 or EMT6 tumor cells and the compound was administered intravenously followed by the regular monitoring of tumor growth. Results. New generation Ryvu STING agonists are strong binders of human STING protein. Ryvu's compounds show high cellular potency inducing cytokine production in human immune cells at low nM range. Moreover, high activity of developed agonists is maintained irrespective of the natural human STING variant as seen in THP-1 reporter cells as well as in human primary immune cells. High cellular potency of developed compounds also translates into efficacy observed in vivo, where systemic intravenous administration leads to significant tumor growth inhibition and complete tumor regressions in mouse syngeneic models. Conclusion. Ryvu has developed a new generation of potent, direct and selective small-molecule STING agonists. The compounds are characterized by drug-like properties and high in vitro potency on par or outperforming known references. Ryvu agonists are suitable for systemic administration and allow to achieve excellent antitumor efficacy. Taken together, the promising results suggest that the developed series holds high potential for improving immunotherapy in cancer patients. Citation Format: Maciej Krzysztof Rogacki, Stefan Chmielewski, Jolanta Mazurek, Magdalena Zawadzka, Katarzyna Wnuk-Lipińska, Kamil Kuś, Katarzyna Wójcik-Jaszczyńska, Aleksandra Poczkaj, Łukasz Dudek, Wojciech Schonemann, Urszula Głowniak-Kwitek, Marcin Leś, Marek Wronowski, Tushar Mahajan, Urszula Kulesza, Magdalena Zastawna, David Synak, Karol Zuchowicz, Karolina Gluza, Katarzyna Banaszak, Karolina Wiatrowska, Izabela Strojny, Mirosława Gładysz, Justyna Jabłońska, Ewelina Gabor-Worwa, Monika Dobrzańska, Raghuram Tangirala, Peter Littlewood, Krzysztof Brzózka. New generation of STING agonists: Development and characterization of a novel series of systemic immunomodulators with improved potency [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 1280.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 4532A-4532A
    Abstract: Background: Stimulator of Interferon Genes (STING) is a major player in the activation of robust innate immune response leading to initiation and enhancement of tumor-specific adaptive immunity. Several clinical and pre-clinical programs are developing cyclic dinucleotides - analogues of endogenous STING ligands. However their chemical nature and stability limit their use as systemic immuno-therapeutics. Herein, we present potent and selective non-nucleotide, non-macrocyclic, small molecule direct STING agonists, structurally unrelated to known chemotypes and suitable for systemic administration. Methods: Binding to recombinant STING protein was examined using FTS, MST, FP and crystallography studies. Phenotypic screen was performed in THP-1 Dual reporter cells. Human macrophages (HMDM) and dendritic cells (HMDC) were differentiated from monocytes (obtained from PBMC) in the presence of M-CSF and GM-CSF/IL-4 for HMDM and HMDC, respectively. Mouse bone marrow-derived dendritic cells (BMDC) were obtained from C57BL/6 or STING KO mice and differentiated with mIL-4 and mGM-CSF. STING agonists were administered into BALB/c mice and cytokine release was measured in plasma. Additionally, mice were inoculated with CT26 murine colon carcinoma cells and the compound was administered, followed by the regular tumor growth monitoring. Finally, the compound was administered to C57BL/6 WT and STING KO mice in several escalating doses. Results: Ryvu's agonists demonstrate a strong binding affinity to recombinant STING proteins across tested species. They trigger pro-inflammatory cytokine release from human PBMC and HMDC and induce dendritic cell maturation regardless of the STING haplotype. Systemic in vivo administration leads to dose-dependent upregulation of STING-dependent pro-inflammatory cytokines, suggesting immune activation which translates into efficacy in vivo in CT26 mouse colorectal cancer model and complete tumor remissions. Furthermore, cured animals develop lasting immunological response demonstrated by diminished tumor growth or lack of palpable tumors in re-challenged mice. Conclusion: Ryvu's STING agonists selectively activate STING-dependent signaling in both mouse and human immune cells promoting anti-tumor immunity. Treatment with Ryvu's STING agonists leads to engagement of the immune system which results in complete tumor remission and development of immunological memory against cancer cells. The compounds show good selectivity and ADME properties enabling development for systemic administration as a single agent or in combinations with immunotherapies or targeted agents. Citation Format: Stefan Chmielewski, Magdalena Zawadzka, Jolanta Mazurek, Maciej K. Rogacki, Karolina Gluza, Katarzyna Wójcik-Jaszczyńska, Aleksandra Poczkaj, Grzegorz Ćwiertnia, Grzegorz Topolnicki, Maciej Kujawa, Eliza Zimoląg, Urszula Głowniak-Kwitek, Magdalena Mroczkowska, Agnieszka Gibas, Marcin Leś, Sylwia Sudoł, Marek Wronowski, Kinga Michalik, Katarzyna Banaszak, Katarzyna Wiklik, Federico Malusa, Michał Combik, Karolina Wiatrowska, Łukasz Dudek, Jose Alvarez, Anna Rajda, Faustyna Gajdosz, Aniela Gołas, Katarzyna Wnuk-Lipińska, Kamil Kuś, Ewelina Gabor-Worwa, Charles Fabritius, Luigi Stasi, Peter Littlewood, Krzysztof Brzózka, Monika Dobrzańska. Development of selective small molecule STING agonists suitable for systemic administration [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 4532A.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 449-449
    Abstract: Homozygous deletions of p16/CDKN2a (cyclin dependent kinase inhibitor 2A) locus are prevalent in cancer and often involve co-deletion of adjacent genes. Metabolic gene MTAP (methylthioadenosine phosphorylase) is localized at the 9p21 chromosome in the close proximity to p16/CDKN2A tumor-suppressor locus. Co-deletion of MTAP may be observed in 80-90% of all tumors harboring homozygous deletion of CDKN2A, which represents 10 - 15% of all human tumors. Many of these tumor types, such as non-small cell lung cancer, pancreatic adenocarcinoma, glioblastoma or mesothelioma are associated with poor prognosis, representing a significant unmet medical need. MTAP deletion results in a massive accumulation of methylthioadenosine (MTA) in cells. MTA in high concentrations is a very selective inhibitor of PRMT5 methyltransferase, competitive for the substrate: S-adenosylmethionine (SAM). Accumulation of MTA in cells with MTAP deletion causes partial inhibition of the methylation activity of PRMT5, which in turn reduces the level of symmetric arginine dimethylation of the whole proteome, and thus an increased sensitivity of cells to modulation of methylosome activity. Therapeutic targeting of PRMT5 in homozygous MTAP-deleted cancers constitute a promising strategy of selective killing of genetically defined cancer cells. Ryvu has identified a series of MTA-cooperative PRMT5 inhibitors which have good drug-like physicochemical properties and block methyltransferase activity with nanomolar IC50 values. Structurally enabled hit generation and optimization allowed quick expansion and delivery of several generations of compounds with novel IP, high target engagement in cells and selective potency in MTAP-deleted cell lines. Ryvu compounds selectively inhibit growth of MTAP-deleted cancer cells in prolonged 3D culture, which strongly correlates with inhibition of PRMT5-dependent protein symmetric dimethylation (SDMA) in those cells. Selectivity between effects observed in MTAP-deleted and WT cells exceeds 100-fold both for SDMA and growth inhibition. The DMPK profile of these compounds allows for oral administration, which enables testing antitumor activity in MTAP null tumor xenograft-bearing mice. Efficacy studies with our lead compound resulted in demonstration of tumor growth inhibition in MTAP -/- model, accompanied by significant inhibition of target proximal PD biomarker.  Overall, these studies provide a rationale for further optimization of our chemical series of MTA-cooperative PRMT5 inhibitors towards a clinical candidate.  Citation Format: Anna Bartosik, Adam Radzimierski, Aneta Bobowska, Oleksandr Levenets, Agata Stachowicz, Kamil Kuś, Kinga Michalik, Katarzyna Banaszak, Monika Madej, Marta Skoda, Kamila Kozłowska-Tomczyk, Igor Tomczyk, Karolina Pyziak, Dobrosława Krzemień, Mirosława Gładysz, Paulina Podkalicka, Aniela Gołas, Karolina Gluza, Grzegorz Satała, Andrzej Gondela, Marta Sowińska, Nicolas Boutard, Agata Chłopek, Aleksandra Więckowska, Daria Szukiel, Grzegorz Ćwiertnia, Iana Levenets, Karol Zuchowicz, Klara Korta-Piątek, Marcin Nowogródzki, Marek Wronowski, Marianna Girardi, Mateusz Świrski, Oleksandr Popika, Paulina Niedziejko-Ćwiertnia, Pierpaolo Cordone, Przemysław Wyrębek, Quỳnh Vũ, Sujit Sasmal, Svitlana Sukhomlinova, Magdalena Miodek, Jacek Faber, Anna Kowal-Chwast, Róża Starczak, Sanja Novak Ratajczak, Agnieszka Świrska, Dawid Gogola, Paweł Guzik, Martin Swarbrick, Mateusz Nowak. Discovery of novel MTA-cooperative PRMT5 inhibitors as targeted therapeutics for MTAP-deleted cancers  [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 449.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 1947-1947
    Abstract: Background: Hematopoietic progenitor kinase 1 (HPK1, MAP4K1) is predominantly expressed in hematopoietic cell linages and serves as a negative regulator of T cells and dendritic cells (DC). Alteration of ERK/MAPK pathway by HPK1 in T-cells and dendritic cells is an inhibitory mechanism that negatively regulates TCR-induced IL-2 gene transcription, T cell maturation and proliferation. Inhibiting kinase activity of HPK1 results in activation of antigen presenting properties of dendritic cells and stimulates maturation and proliferation of T cells. Therefore, small molecule inhibitors of HPK1 could serve as a novel agent to transform cold, resistant tumors into sensitive hot cancers and provide additional benefit in combination with existing immunotherapies. Methods: Inhibition of HPK1 was assessed by biochemical assay with recombinant human and mouse protein. Small molecule inhibitors were tested in biochemical assay on other MAP4Ks and in addition profiled against broad kinase panel. Phosphorylation of Serine 376 and Tyrosine 128 of SLP-76 adaptor protein upon HPK1 inhibition was monitored by Western Blotting in human and murine T-cells. IL-2 release was monitored in total human PBMC, human CD3+ T cells and mouse CD3+ splenocytes. Human CD3+ T cells were isolated from PBMC, activated with plate-bound anti-CD3/anti-CD28 and exposed to compounds in the presence of PGE-2, followed by IL-2 release measurement, viability and proliferation assessment using flow cytometry. Mouse CD3+ splenocytes were isolated from Balb/c mice, activated with plate-bound anti-CD3/anti-CD28 and exposed to compounds in the presence of PGE-2, followed by IL-2 release assessment. Results: Small molecule Ryvu HPK1 inhibitors block kinase activity of recombinant mouse and human protein with nanomolar IC50 values. Ryvu compounds show broad kinome selectivity. Ryvu HPK1 inhibitors selectively engage downstream biomarkers in human and murine T cells. While inhibiting phosphorylation of Serine 376, Ryvu compounds do not affect activatory phosphorylation of Tyrosine 128 of SLP-76 in human or mouse CD3+ T cells. Ryvu HPK1 inhibitors overcome PGE-2 induced resistance following TCR activation in human PBMCs, CD3+ T-cells and mouse CD3+ T cells, inducing IL-2 release. Compounds have good druglike physicochemical properties. Conclusion: Ryvu HPK1 inhibitors promote activation of in-vitro immunostimulatory properties of both mouse and human immune cells, overcoming immunosuppression. The chemical series has the potential to show anti-tumor efficacy in syngeneic animal models as a single agent or in combination with checkpoint inhibitors. Citation Format: Stefan Chmielewski, Maciej Kujawa, Eliza Zimoląg, Paweł Guzik, Agata Dudek, Grzegorz Topolnicki, Sylwia Sudoł, Agnieszka Gibas, Marta Bugaj, Kostiantyn Krolenko, Marcin Nowogródzki, Anita Janiga, Przemysław Wyrębek, Jakub Pięta, Aleksandra Brzdonkiewicz, Grzegorz Wilkowski, Marcin Walczak, Katarzyna Maciejewska, Adam Radzimierski, Wojciech Jasnosz, Tushar Mahajan, Roberta Bartolotta, Karolina Gluza, Patryk Kret, Ewelina Rutkowska, Kinga Michalik, Katarzyna Banaszak, Adrian Podkowa, Aniela Gołas, Katarzyna Wnuk-Lipińska, Charles Fabritius, Luigi Stasi, Peter Littlewood, Krzysztof Brzózka, Anna Bartosik, Monika Dobrzańska. Development and characterization of small molecule HPK1 inhibitors [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 1947.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. 1281-1281
    Abstract: Background: Hematopoietic progenitor kinase 1 (HPK1, MAP4K1) is a member of the serine/threonine MAP4K family predominantly expressed in hematopoietic cell lineages which plays a pivotal role in the negative regulation of the signaling cascade triggered by T cell receptor engagement. Inhibition of its activity promotes secretion of IL-2, T cell maturation, and proliferation. It has been also suggested that inhibition of HPK1 may hyperactivate both B cells and dendritic cells via hampering HPK1- mediated negative feedback mechanisms involved in BCR regulation and enhancement of antigen presenting capability of dendritic cells. Suppression of the TCR inhibitory mechanisms with small molecule HPK1 inhibitors might constitute a novel approach in tumor immunotherapy which enhances neoantigen recognition and boosts immune responses of T and B lymphocytes against cancer cells. Thus, small molecule HPK1 inhibitors may provide additional benefit for patients subjected to existing immunotherapies. Methods: Inhibition of HPK1 was assessed by biochemical assay with recombinant human and mouse protein. Small molecule inhibitors were tested in biochemical assay on selected anti- and off-targets and profiled against a broad kinase panel. Phosphorylation of serine 376 on SLP-76 adaptor protein and specific TCR activation-related markers upon HPK1 inhibition was monitored by either Western Blotting or flow cytometry in human and murine T-cells. IL-2 release was measured in human PBMCs and mouse splenic T cells. PBMC cells were activated and exposed to compounds in the presence of PGE-2, followed by IL-2 release measurement. Mice were challenged with the compounds and pharmacodynamic biomarkers were evaluated through flow cytometry and AlphaLisa. Results: Small molecule Ryvu HPK1 inhibitors block kinase activity of recombinant mouse and human protein with sub-nanomolar IC50 values. Ryvu compounds selectively engage downstream biomarkers in human and murine T cells. While inhibiting phosphorylation of serine 376, Ryvu HPK1 inhibitors do not affect activatory phosphorylation of specific phosphotyrosine residues of SLP-76 in human or mouse CD3+ T cells. Ryvu compounds overcome PGE-2 induced resistance following TCR activation in human PBMCs, and mouse CD3+ T cells, inducing IL-2 release. Ryvu compounds have good physicochemical properties and good overall selectivity. In vivo activity and target engagement have been confirmed in the model with anti-CD3 antibody infusion. Conclusion: Pharmacological inhibition of HPK1 kinase activity has strong potential to become a novel immunomodulatory approach for cancer treatment. Citation Format: Maciej Kujawa, Eliza Zimoląg, Michał Gałęzowski, Paweł Guzik, Agata Dudek, Andrzej Gondela, Marcin Nowogródzki, Marianna Girardi, Kostiantyn Krolenko, Marta Bugaj, Sylwia Sudoł, Agnieszka Gibas, Joanna Szeremeta-Spisak, Aneta Bobowska, Magdalena Zastawna, Przemysław Wyrębek, Nicolas Boutard, Aleksandra Więckowska, Wojciech Jasnosz, Wojciech Schonemann, Karol Zuchowicz, David Synak, Urszula Kulesza, Oleksandr Leventes, Mateusz Świrski, Sujit Sasmal, Karolina Gluza, Patryk Kret, Mateusz Ogórek, Kinga Michalik, Katarzyna Banaszak, Adrian Podkowa, Katarzyna Wnuk-Lipińska, Monika Dobrzańska, Peter Littlewood, Krzysztof Brzózka, Anna Bartosik, Stefan Chmielewski. Development and characterization of small molecule HPK1 inhibitors [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 1281.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 1806-1806
    Abstract: Targeting PRMT5 in MTAP-deleted tumors in a synthetic lethal approach represents a promising antitumor strategy across many tumor types. Metabolic gene MTAP is localized at the 9p21 chromosome in the close proximity to CDKN2A tumor-suppressor locus. Co-deletion of MTAP may be observed in 80-90% of all tumors harboring homozygous deletion of CDKN2A, which represents 10-15% of all human tumors. MTAP deletion results in a massive accumulation of methylotioadenosine (MTA) in cells. MTA in high concentrations is a selective inhibitor of PRMT5 type II methyltransferase. PRMT5 conjugated with WD-repeat containing protein (WDR77) builds methylosome, which regulates essential cellular functions via symmetric demethylation (SDMA) of target proteins involved in regulation of gene expression, RNA splicing, signal transduction, metabolism and other functions. Accumulation of MTA in cells with MTAP deletion causes a partial inhibition of the methylation activity of PRMT5, which in turn reduces the level of symmetric arginine dimethylation of the whole proteome, and thus an increased sensitivity of cells to modulation of the methylosome activity. Therapeutic targeting of PRMT5 in homozygous MTAP-deleted cancers constitute a promising strategy of selective killing of genetically defined cancer cells. Currently available clinical stage PRMT5 small molecule inhibitors are not MTA-cooperative and therefore are not selective in tumors harboring MTAP deletion. Here we present MTA-cooperative PRMT5 inhibitors, which selectively inhibit the growth of MTAP deleted cancer cells. Ryvu has identified a series of MTA-cooperative PRMT5 inhibitors which have good drug-like physicochemical properties and block methyltransferase activity with nanomolar IC50 values. Ryvu compounds selectively inhibit growth of MTAP deleted cancer cells in prolonged 3D culture, which strongly correlates with inhibition of PRMT5-dependent protein symmetric demethylation (SDMA) in those cells. Selectivity between effects observed in MTAP deleted and WT cells exceeds 100-fold both for SDMA and growth inhibition. The DMPK profile of these compounds allows for oral administration, which enables testing dose-dependent antitumor activity in MTAP null tumor xenograft-bearing mice. Overall, these studies provide rationale for further optimization of chemical series towards clinical candidate.  Citation Format: Oleksandr Levenets, Anna Bartosik, Marta Sowińska, Karol Zuchowicz, Sujit Sasmal, Klara Korta-Piątek, Adam Radzimierski, Paulina Niedziejko, Oleksandr Popika, Mateusz Świrski, Agata Stachowicz, Maciej Mikulski, Magdalena Sieprawska-Lupa, Katarzyna Banaszak, Kinga Michalik, Kamil Kuś, Monika Madej, Adrian Podkowa, Karolina Gluza, Grzegorz Satała, Ewelina Cieluch, Dobrosława Krzemień, Andrzej Gondela, Grzegorz Ćwiertnia, Marek Wronowski, Nicolas Boutard, Aleksandra Więckowska, Joanna Zezula, Justyna Jabłońska, Mirosława Gładysz, Igor Tomczyk, Jacek Faber, Marcin Serocki, Eliza Drwal, Kamila Kozłowska-Tomczyk, Marta Skoda, Martin Swarbrick, Krzysztof Brzózka, Mateusz Nowak. Discovery of novel MTA-cooperative PRMT5 inhibitors as a targeted therapeutics for MTAP deleted cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 1806.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages