In:
Journal of Cerebral Blood Flow & Metabolism, SAGE Publications, Vol. 20, No. 1 ( 2000-01), p. 119-129
Abstract:
Excitotoxicity is implicated in the pathogenesis of several neurologic diseases, such as chronic neurodegenerative diseases and stroke. Recently, it was reported that excitotoxicity has a relationship to apoptotic neuronal death, and that the mitochondrial toxin, 3-nitropropionic acid (3-NP), could induce apoptosis in the striatum. Although striatal lesions produced by 3-NP could develop through an excitotoxic mechanism, the exact relationship between apoptosis induction and excitotoxicity after 3-NP treatment is still not clear. The authors investigated the role of excitotoxicity and oxidative stress on apoptosis induction within the striatum after intraperitoneal injection of 3-NP. The authors demonstrated that removal of the corticostriatal glutamate pathway reduced superoxide production and apoptosis induction in the denervated striatum of decorticated mice after 3-NP treatment. Also, the N-methyl-d-aspartate (NMDA) receptor antagonist, MK-801, prevented apoptosis in the striatum after 3-NP treatment for 5 days, whereas the non-NMDA receptor antagonist, 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline, was ineffective. The authors also evaluated the initial type of neuronal death by 3-NP treatment for different durations from 1 to 5 days. In early striatal damage, apoptotic neuronal death initially occurred after 3-NP treatment. Our data show that excitotoxicity related to oxidative stress initially induces apoptotic neuronal death in mouse striatum after treatment with 3-NP.
Type of Medium:
Online Resource
ISSN:
0271-678X
,
1559-7016
DOI:
10.1097/00004647-200001000-00016
Language:
English
Publisher:
SAGE Publications
Publication Date:
2000
detail.hit.zdb_id:
2039456-1
Bookmarklink