feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2009
    In:  BMC Bioinformatics Vol. 10, No. 1 ( 2009-12)
    In: BMC Bioinformatics, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2009-12)
    Type of Medium: Online Resource
    ISSN: 1471-2105
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2009
    detail.hit.zdb_id: 2041484-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Cell Stem Cell, Elsevier BV, Vol. 16, No. 3 ( 2015-03), p. 323-337
    Type of Medium: Online Resource
    ISSN: 1934-5909
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 2375356-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Stem Cells, Oxford University Press (OUP), Vol. 33, No. 7 ( 2015-07-01), p. 2196-2207
    Abstract: Recent identification of platelet/megakaryocyte-biased hematopoietic stem/repopulating cells requires revision of the intermediate pathway for megakaryopoiesis. Here, we show a unipotent megakaryopoietic pathway bypassing the bipotent megakaryocyte/erythroid progenitors (biEMPs). Cells purified from mouse bone marrow by CD42b (GPIbα) marking were demonstrated to be unipotent megakaryocytic progenitors (MKPs) by culture and transplantation. A subpopulation of freshly isolated CD41+ cells in the lineage Sca1+cKit+ (LSK) fraction (subCD41+LSK) differentiated only into MKP and mature megakaryocytes in culture. Although CD41+LSK cells as a whole were capable of differentiating into all myeloid and lymphoid cells in vivo, they produced unipotent MKP, mature megakaryocytes, and platelets in vitro and in vivo much more efficiently than Flt3+CD41−LSK cells, especially at the early phase after transplantation. In single cell polymerase chain reaction and thrombopoietin (TPO) signaling analyses, the MKP and a fraction of CD41+LSK, but not the biEMP, showed the similarities in mRNA expression profile and visible TPO-mediated phosphorylation. On increased demand of platelet production after 5-FU treatment, a part of CD41+LSK population expressed CD42b on the surface, and 90% of them showed unipotent megakaryopoietic capacity in single cell culture and predominantly produced platelets in vivo at the early phase after transplantation. These results suggest that the CD41+CD42b+LSK are straightforward progenies of megakaryocytes/platelet-biased stem/repopulating cells, but not progenies of biEMP. Consequently, we show a unipotent/highly biased megakaryopoietic pathway interconnecting stem/repopulating cells and mature megakaryocytes, the one that may play physiologic roles especially in emergency megakaryopoiesis. Stem Cells 2015;33:2196–2207
    Type of Medium: Online Resource
    ISSN: 1066-5099 , 1549-4918
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2015
    detail.hit.zdb_id: 2030643-X
    detail.hit.zdb_id: 1143556-2
    detail.hit.zdb_id: 605570-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: SSRN Electronic Journal, Elsevier BV
    Type of Medium: Online Resource
    ISSN: 1556-5068
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: SSRN Electronic Journal, Elsevier BV
    Type of Medium: Online Resource
    ISSN: 1556-5068
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 70, No. 8_Supplement ( 2010-04-15), p. 239-239
    Abstract: Dysregulated JAK-STAT signaling via activating mutations in tyrosine kinases (e.g. JAK2 and MPL) is a hallmark of chronic myeloproliferative neoplasms (MPNs). Even in the absence of mutations in JAK2 or MPL, JAK-STAT activation can be demonstrated, suggesting that alterations of other regulatory elements in this pathway may contribute to MPN pathobiology. One regulator of JAK-STAT signaling is LNK (SH2B3), an adaptor protein that binds to MPL via it SH2 domain and co-localizes to the plasma membrane via its pleckstrin homology (PH) domain. Upon cytokine stimulation, LNK binds strongly to JAK2 and dampens or terminates downstream STAT activation. LNK−/- mice exhibit features consistent with an MPN phenotype, including splenomegaly, leukocytosis, and thrombocytosis. We therefore sequenced LNK in 34 JAK2 V617F-negative MPN patients, and report the identification of novel mutations in exon 2 of LNK in two patients. In a patient with primary myelofibrosis, a 5 base-pair deletion and missense mutation (DEL) leading to a premature stop codon and loss of the PH and SH2 domains was identified. A second patient with essential thrombocythemia exhibited a missense mutation leading to an E208Q substitution in the PH domain. DNA isolated from cultured skin fibroblasts revealed wild-type (WT) sequence, confirming that these mutations were somatic. TPO-dependent BaF3-MPL cells were transduced with WT and mutant LNK. While WT LNK inhibited TPO-dependent growth and activation of JAK2-STAT3/5, the DEL mutation led to loss of these negative feedback properties, thereby permitting augmented and sustained JAK-STAT activation in response to TPO stimulation. The E208Q mutation resulted in partial loss of LNK function, suggesting that LNK mutations may confer a spectrum of phenotypes. In peripheral blood samples obtained from MPN patients, stimulation with TPO or G-CSF revealed a unique phosphorylated STAT3/5 (pSTAT3+/5+) subpopulation that was increased in DEL compared with normal donor samples. A similar pSTAT3+/5+ subpopulation was seen with JAK2 V617F and MPL W515L-positive samples, suggesting that this may be a shared feature of MPNs. E208Q cells exhibited STAT3/5 phosphorylation in response to TPO, but not G-CSF, indicating that a partial loss of LNK function may generate differential STAT activation profiles in response to specific cytokines. The cytokine-responsive pSTAT3+/5+ cells from DEL were primarily CD34+, and the DEL mutation was detected in this subset, suggesting that LNK mutations arise in a hematopoietic stem or progenitor cell. Finally, the pSTAT3+/5+ response was abrogated by JAK inhibition, suggesting that JAK2 inhibitors may be a feasible option for MPN patients bearing LNK mutations. Thus, mutations in LNK, the first reported in human disease, lead to loss of LNK negative feedback function and represent a novel mechanism of MPN pathogenesis. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 239.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2010
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 935-935
    Abstract: Introduction The bone marrow (BM) microenvironment consists of various cell types such as mesenchymal stromal cells, endothelial cells, osteoblastic cells and multiple immune cell types including mature myeloid cells and lymphocytes. Recent studies have shown that leukemias can create and maintain a leukemia-supporting BM microenvironment, and vice versa, a dysfunctional BM microenvironment can contribute to leukemia development and progression. Moreover, in tumors the microenvironment is often immunosuppressive and restrains effective anti-tumoral immune responses by adaptive and innate immunity. A better understanding of the precise localization of microenvironmental and immune cell types in intact tissue, and how they physically interact with each other and with tumor cells, will improve our understanding of the mechanisms by which cancer reprograms its microenvironment and may form the basis for novel immunotherapies. Methods CO-Detection by antibody indEXing (CODEX) is a multiplex fluorescence microscopy platform based on DNA-conjugated antibodies that allows the analysis of 50+ markers in a single tissue section. After staining with an antibody cocktail, tissues are imaged in a multi-cycle reaction using a microfluidics system and a fluorescence microscope with a computer automated X/Y/Z stage. DNA-conjugated antibodies are rendered visible using complementary fluorescent DNA probes, followed by imaging, probe stripping, washing and re-rendering. This process is repeated until all the antibodies present in the initial cocktail have been rendered and imaged. Here, we used CODEX to analyze intact BM at the single-cell level (~200nm resolution) during leukemic progression. Chronic myeloid leukemia (CML)-like disease was induced in non-irradiated mice using BCR-ABL1-GFP retrovirus. Tissue sections of femoral bones harvested at different time points after leukemia onset were stained using a 50+ marker CODEX antibody panel to simultaneously identify hematopoietic and leukemic stem and progenitor cells, multiple BM microenvironmental cell types, myeloid and lymphoid cells as well as functional markers. Results We have built an integrated computational pipeline for the analysis of high-dimensional CODEX data that enables the identification and characterization of BM cell types as well as their spatial organization in situ. Raw images were concatenated and aligned using Hoechst nuclear stain as a reference, followed by deconvolution, segmentation, marker expression quantification and spatial compensation. Exported data were clustered in an unsupervised manner using VorteX algorithm, which identified 28 distinct cellular clusters based on marker expression values. All major BM compartments including stromal (vascular, pericytes, osteoblastic), lymphoid (T and B cell subsets), myeloid (megakaryocytes, macrophages, dendritic cells, granulocytes) and progenitor cell types, as well as leukemic cells, were represented. During leukemic progression, the BM microenvironment was dramatically rearranged. Besides the expected growth of the leukemic clone, we observed a massive increase in vascular and osteoblastic cell types, whereas immune cell clusters were significantly reduced. Interestingly, CD71, the transferrin receptor, was strongly up-regulated on tumor cells in advanced leukemia, indicating towards a role for iron metabolism in malignant progression. Furthermore, hierarchical clustering of tissue regions based on cellular composition using X/Y/Z positional information pointed towards the emergence of specific cell-cell interaction modules that developed during leukemic progression, including mutual attraction between B cells and central arterioles. Conclusions High-dimensional imaging of the BM microenvironment by CODEX allows studying the abundance and distribution of cellular elements that are often underestimated or missed by traditional flow cytometry, such as stromal cells, vasculature and megakaryocytes. Importantly, CODEX identifies single cells in their tissue context during leukemic progression and facilitates the discovery of novel cell-cell interactions and cell types as well as unexpected marker constellations. Disclosures Samusik: Akoya Biosciences: Consultancy, Equity Ownership, Honoraria, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Nolan:Akoya Biosciences: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Goltsev:Akoya Biosciences: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Nature Methods, Springer Science and Business Media LLC, Vol. 20, No. 2 ( 2023-02), p. 304-315
    Abstract: The ability to align individual cellular information from multiple experimental sources is fundamental for a systems-level understanding of biological processes. However, currently available tools are mainly designed for single-cell transcriptomics matching and integration, and generally rely on a large number of shared features across datasets for cell matching. This approach underperforms when applied to single-cell proteomic datasets due to the limited number of parameters simultaneously accessed and lack of shared markers across these experiments. Here, we introduce a cell-matching algorithm, matching with partial overlap (MARIO) that accounts for both shared and distinct features, while consisting of vital filtering steps to avoid suboptimal matching. MARIO accurately matches and integrates data from different single-cell proteomic and multimodal methods, including spatial techniques and has cross-species capabilities. MARIO robustly matched tissue macrophages identified from COVID-19 lung autopsies via codetection by indexing imaging to macrophages recovered from COVID-19 bronchoalveolar lavage fluid by cellular indexing of transcriptomes and epitopes by sequencing, revealing unique immune responses within the lung microenvironment of patients with COVID.
    Type of Medium: Online Resource
    ISSN: 1548-7091 , 1548-7105
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2163081-1
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 12 ( 2021-12-6)
    Abstract: Non-human primate (NHP) animal models are an integral part of the drug research and development process. For some biothreat pathogens, animal model challenge studies may offer the only possibility to evaluate medical countermeasure efficacy. A thorough understanding of host immune responses in such NHP models is therefore vital. However, applying antibody-based immune characterization techniques to NHP models requires extensive reagent development for species compatibility. In the case of studies involving high consequence pathogens, further optimization for use of inactivated samples may be required. Here, we describe the first optimized CO-Detection by indEXing (CODEX) multiplexed tissue imaging antibody panel for deep profiling of spatially resolved single-cell immune responses in rhesus macaques. This 21-marker panel is composed of a set of 18 antibodies that stratify major immune cell types along with a set three Ebola virus (EBOV)-specific antibodies. We validated these two sets of markers using immunohistochemistry and CODEX in fully inactivated Formalin-Fixed Paraffin-Embedded (FFPE) tissues from mock and EBOV challenged macaques respectively and provide an efficient framework for orthogonal validation of multiple antibody clones using CODEX multiplexed tissue imaging. We also provide the antibody clones and oligonucleotide tag sequences as a valuable resource for other researchers to recreate this reagent set for future studies of tissue immune responses to EBOV infection and other diseases.
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2606827-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2016
    In:  Cancer Immunology Research Vol. 4, No. 11_Supplement ( 2016-11-01), p. PR14-PR14
    In: Cancer Immunology Research, American Association for Cancer Research (AACR), Vol. 4, No. 11_Supplement ( 2016-11-01), p. PR14-PR14
    Abstract: Multiparameter cytometry, for example with CyTOF, has enabled the interrogation of immune phenotypes in unprecedented detail in many clinical contexts. But cytometry is incapable of answering a question of critical importance to many tissue context studies, and especially understanding how local interactions between tumor cells and immune cells correlate to clinical outcomes. This becomes especially relevant to understanding the subtleties of how different immunotherapeutic approaches operate in vivo. We recently developed a multiparameter immunofluorescence technique, termed CODEX, which allows the capture of spatial information for protein and RNA expression in tissue sections. This spatial information enables us to establish not only cell-types according to traditional phenotypic surface marker expression, but also to potentially surmise specific tissue states driving clinical responses. To make sense of the high-dimensional data afforded by CODEX, we apply here state-of-the-art deep neural networks (DNNs). These networks, which have achieved superhuman classification accuracy in many diverse domains, automatically identify cells, cell niches and regions (at multiple scales) that are capable of distinguishing healthy and diseased samples. This is done in an unbiased way, with only ‘healthy’ vs. ‘disease’ labels as additional input alongside the imaging data. We first train DNNs to successfully classify multiparameter tissue images from independent replicates across conditions. Having achieved a high accuracy of classification, we set the network output to highlight cells and regions deemed to be most relevant to classify each condition. Applying this methodology to healthy and mrl (lupus) spleens stained for 30 markers, our neural network is able to successfully identify a not previously observed enrichment of cell confluences (niches) consisting of CD8 T-cells and conventional dendritic cells enriched in MRL samples, as well as other novel niches completely unpredicted by prior knowledge. Our DNN enables the systematic and unbiased discovery of specific immune interactions in any tissue type. Applying our technique to the analysis of samples from immunotherapy recipients could enable the discovery of key factors in the tumor microenvironment that distinguish positive responders as well as the subsequent identification of targets for perturbation. Citation Format: Salil S. Bhate, Nikolay Samusik, Yury Goltsev, Garry P. Nolan. Automatic identification of cell niches and immune interactions important for clinical outcomes using multiparameter imaging and deep neural networks [abstract]. In: Proceedings of the Second CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; 2016 Sept 25-28; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2016;4(11 Suppl):Abstract nr PR14.
    Type of Medium: Online Resource
    ISSN: 2326-6066 , 2326-6074
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2732517-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages