Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Monthly Notices of the Royal Astronomical Society Vol. 504, No. 3 ( 2021-05-13), p. 4400-4415
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 504, No. 3 ( 2021-05-13), p. 4400-4415
    Abstract: We study the radial motions of cold, star-forming gas in the secular evolution phase of a set of 14 magnetohydrodynamical cosmological zoom-in simulations of Milky Way-mass galaxies. We study the radial transport of material within the disc plane in a series of concentric rings. For the gas in each ring at a given time we compute two quantities as a function of time and radius: (1) the radial bulk flow of the gas and (2) the radial spread of the gas relative to the bulk flow. Averaging the data from all the haloes, we find that the radial spread increases with radius in the form of a power law with strong secondary dependencies on the fraction of accreted material and the local radial velocity dispersion of the gas. We find that the bulk motion of gas is well described in the inner disc regions by a radially independent mean inwards flow speed of $-2.4\, \rm {km\ s}^{-1}$. The spread around this value relates to the change in angular momentum of the gas and also the amount of accreted material. These scalings from fully cosmological, MHD simulations of galaxy formation can then be used in semi-analytic models to better parametrize the radial flow of gas in discs.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  Monthly Notices of the Royal Astronomical Society Vol. 514, No. 4 ( 2022-07-07), p. 5085-5104
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 514, No. 4 ( 2022-07-07), p. 5085-5104
    Abstract: We study the presence and importance of stellar migration in the evolution of 17 Milky-Way like disc galaxies with stellar mass 10 & lt; log(M*/M⊙) & lt; 11 from the Auriga suite of zoom-in cosmological hydrodynamical simulations. We compare the birth radii of the stars to their radii at z = 0 for each system and present mean values of the strength of stellar migration as a function of radius and stellar age which vary between 1–4 kpc. We also investigate the effect of migration on age and metallicity radial profiles in the discs. We find several cases of age gradient flattening due to migration, but significant changes to metallicity profiles only for older stellar populations and discs that develop a strong bar. Furthermore, we study stellar migration from the perspective of the change of the galactocentric radius (ΔR) and orbital guiding centre radius (ΔRg) of stellar particles between given time intervals. We find that stars migrate approximately as a diffusion process only in the outer parts of the discs and for particular galaxies that have a weak bar. Strongly barred galaxies in our sample show larger stellar migration but its timestep evolution is slower-than-diffusion. Finally, we give parametrizations that encapsulate the dependence of the strength of the radial migration as a function of time and radius, for incorporation into (semi-)analytic models of galaxy evolution.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Monthly Notices of the Royal Astronomical Society Vol. 494, No. 3 ( 2020-05-21), p. 3880-3898
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 494, No. 3 ( 2020-05-21), p. 3880-3898
    Abstract: Using a large sample of bright nearby stars with accurate Gaia Data Release 2 astrometry and auxiliary spectroscopy we map out the properties of the principle Galactic components such as the ‘thin’ and ‘thick’ discs and the halo. We confirm previous claims that in the Solar neighbourhood, there exists a large population of metal-rich ([Fe/H] & gt; −0.7) stars on highly eccentric orbits. By studying the evolution of elemental abundances, kinematics, and stellar ages in the plane of azimuthal velocity vϕ and metallicity [Fe/H], we demonstrate that this metal-rich halo-like component, which we dub the Splash, is linked to the α-rich (or ‘thick’) disc. Splash stars have little to no angular momentum and many are on retrograde orbits. They are predominantly old, but not as old as the stars deposited into the Milky Way (MW) in the last major merger. We argue, in agreement with several recent studies, that the Splash stars may have been born in the MW’s protodisc prior to the massive ancient accretion event which drastically altered their orbits. We cannot, however, rule out other (alternative) formation channels. Taking advantage of the causal connection between the merger and the Splash, we put constraints of the epoch of the last massive accretion event to have finished 9.5 Gyr ago. The link between the local metal-rich and metal-poor retrograde stars is confirmed using a large suite of cutting-edge numerical simulations of the MW’s formation.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 481, No. 2 ( 2018-12-01), p. 1726-1743
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2018
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Monthly Notices of the Royal Astronomical Society Vol. 495, No. 1 ( 2020-06-11), p. 12-28
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 495, No. 1 ( 2020-06-11), p. 12-28
    Abstract: We study the orbital phase space of dark matter (DM) haloes in the auriga suite of cosmological hydrodynamics simulations of Milky Way (MW) analogues. We characterize haloes by their spherical action distribution, $F\left(J_{{r}},L\right)$, a function of the specific angular momentum, L, and the radial action, Jr, of the DM particles. By comparing DM-only and hydrodynamical simulations of the same haloes, we investigate the contraction of DM haloes caused by the accumulation of baryons at the centre. We find a small systematic suppression of the radial action in the DM haloes of the hydrodynamical simulations, suggesting that the commonly used adiabatic contraction approximation can result in an underestimate of the density by $\sim 8{{ \rm {per\ cent}}}$. We apply an iterative algorithm to contract the auriga DM haloes given a baryon density profile and halo mass, recovering the true contracted DM profiles with an accuracy of $\sim 15{{ \rm {per\ cent}}}$, that reflects halo-to-halo variation. Using this algorithm, we infer the total mass profile of the MW’s contracted DM halo. We derive updated values for the key astrophysical inputs to DM direct detection experiments: the DM density and velocity distribution in the Solar neighbourhood.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 497, No. 4 ( 2020-10-01), p. 4459-4471
    Abstract: We use magnetohydrodynamical simulations of Milky Way-mass haloes from the Auriga project to investigate the properties of surviving and destroyed dwarf galaxies that are accreted by these haloes over cosmic time. We show that the combined luminosity function of surviving and destroyed dwarfs at infall is similar in the various Auriga haloes, and is dominated by the destroyed dwarfs. There is, however, a strong dependence on infall time: destroyed dwarfs typically have early infall times of less than 6 Gyr (since the big bang), whereas the majority of dwarfs accreted after 10 Gyr have survived to the present day. Because of their late infall, the surviving satellites have higher metallicities at infall than their destroyed counterparts of similar mass at infall; the difference is even more pronounced for the present-day metallicities of satellites, many of which continue to form stars after infall, in particular for $M_{\rm star}\gt 10^7 \, {\rm M}_\odot$. In agreement with previous work, we find that a small number of relatively massive destroyed dwarf galaxies dominate the mass of stellar haloes. However, there is a significant radial dependence: while 90 per cent of the mass in the inner regions (${\lt}20\,$ kpc) is contributed, on average, by only three massive progenitors, the outer regions (${\gt}100\,$ kpc) typically have ∼8 main progenitors of relatively lower mass. Finally, we show that a few massive progenitors dominate the metallicity distribution of accreted stars, even at the metal-poor end. Contrary to common assumptions in the literature, stars from dwarf galaxies of mass $M_{\rm star}\lt 10^7 \, {\rm M}_\odot$ make up less than 10 per cent of the accreted, metal poor stars ([Fe/H] ${\lt}-3$) in the inner $50\,$ kpc.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 507, No. 4 ( 2021-09-17), p. 4953-4967
    Abstract: We investigate the formation of the satellite galaxy population of a Milky Way-mass halo in a very highly resolved magnetohydrodynamic cosmological zoom-in simulation (baryonic mass resolution mb = 800 $\rm M_{\odot }$). We show that the properties of the central star-forming galaxy, such as the radial stellar surface density profile and star formation history, are (i) robust to stochastic variations associated with the so-called Butterfly Effect and (ii) well converged over 3.5 orders of magnitude in mass resolution. We find that there are approximately five times as many satellite galaxies at this high resolution compared to a standard ($m_b\sim 10^{4-5}\, \rm M_{\odot }$) resolution simulation of the same system. This is primarily because two-thirds of the high-resolution satellites do not form at standard resolution. A smaller fraction (one-sixth) of the satellites present at high-resolution form and disrupt at standard resolution; these objects are preferentially low-mass satellites on intermediate- to low-eccentricity orbits with impact parameters ≲30 kpc. As a result, the radial distribution of satellites becomes substantially more centrally concentrated at higher resolution, in better agreement with recent observations of satellites around Milky Way-mass haloes. Finally, we show that our galaxy formation model successfully forms ultra-faint galaxies and reproduces the stellar velocity dispersion, half-light radii, and V-band luminosities of observed Milky Way and Local Group dwarf galaxies across six orders of magnitude in luminosity (103–$10^{9}\, \rm L_{\odot }$).
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 469, No. 3 ( 2017-08-11), p. 3185-3199
    Abstract: The magnetic fields observed in the Milky Way and nearby galaxies appear to be in equipartition with the turbulent, thermal and cosmic ray energy densities, and hence are expected to be dynamically important. However, the origin of these strong magnetic fields is still unclear, and most previous attempts to simulate galaxy formation from cosmological initial conditions have ignored them altogether. Here, we analyse the magnetic fields predicted by the simulations of the Auriga Project, a set of 30 high-resolution cosmological zoom simulations of Milky Way like galaxies, carried out with a moving-mesh magnetohydrodynamics code and a detailed galaxy formation physics model. We find that the magnetic fields grow exponentially at early times owing to a small-scale dynamo with an e-folding time of roughly 100 Myr in the centre of haloes until saturation occurs around z = 2–3, when the magnetic energy density reaches about 10 per cent of the turbulent energy density with a typical strength of $10\text{--}50\,\rm {\mu G}$. In the galactic centres, the ratio between magnetic and turbulent energies remains nearly constant until z = 0. At larger radii, differential rotation in the discs leads to linear amplification that typically saturates around z = 0.5–0. The final radial and vertical variations of the magnetic field strength can be well described by two joint exponential profiles, and are in good agreement with observational constraints. Overall, the magnetic fields have only little effect on the global evolution of the galaxies as it takes too long to reach equipartition. We also demonstrate that our results are well converged with numerical resolution.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2017
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2019
    In:  Monthly Notices of the Royal Astronomical Society Vol. 484, No. 4 ( 2019-04-21), p. 5453-5467
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 484, No. 4 ( 2019-04-21), p. 5453-5467
    Abstract: We present and apply a method to infer the mass of the Milky Way (MW) by comparing the dynamics of MW satellites to those of model satellites in the eagle cosmological hydrodynamics simulations. A distribution function (DF) for galactic satellites is constructed from eagle using specific angular momentum and specific energy, which are scaled so as to be independent of host halo mass. In this two-dimensional space, the orbital properties of satellite galaxies vary according to the host halo mass. The halo mass can be inferred by calculating the likelihood that the observed satellite population is drawn from this DF. Our method is robustly calibrated on mock eagle systems. We validate it by applying it to the completely independent suite of 30 auriga high-resolution simulations of MW-like galaxies: the method accurately recovers their true mass and associated uncertainties. We then apply it to 10 classical satellites of the MW with six-dimensional phase-space measurements, including updated proper motions from the Gaia satellite. The mass of the MW is estimated to be $M_{200}^{\rm {MW}}=1.17_{-0.15}^{+0.21}\times 10^{12}\, \mathrm{M}_{\odot }$ (68 per cent confidence limits). We combine our total mass estimate with recent mass estimates in the inner regions of the Galaxy to infer an inner dark matter (DM) mass fraction $M^\rm {DM}(\lt 20~\rm {kpc})/M^\rm {DM}_{200}=0.12$, which is typical of ${\sim }10^{12}\, \mathrm{M}_{\odot }$ lambda cold dark matter haloes in hydrodynamical galaxy formation simulations. Assuming a Navarro, Frenk and White (NFW) profile, this is equivalent to a halo concentration of $c_{200}^{\rm {MW}}=10.9^{+2.6}_{-2.0}$.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Monthly Notices of the Royal Astronomical Society Vol. 520, No. 4 ( 2023-02-22), p. 6091-6103
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 520, No. 4 ( 2023-02-22), p. 6091-6103
    Abstract: Accreted stellar populations are comprised of the remnants of destroyed galaxies, and often dominate the ‘stellar haloes’ of galaxies such as the Milky Way (MW). This ensemble of external contributors is a key indicator of the past assembly history of a galaxy. We introduce a novel statistical method that uses the unbinned metallicity distribution function (MDF) of a stellar population to estimate the mass spectrum of its progenitors. Our model makes use of the well-known mass–metallicity relation of galaxies and assumes Gaussian MDF distributions for individual progenitors: the overall MDF is thus a mixture of MDFs from smaller galaxies. We apply the method to the stellar halo of the MW, as well as the classical MW satellite galaxies. The stellar components of the satellite galaxies have relatively small sample sizes, but we do not find any evidence for accreted populations with L & gt; Lhost/100. We find that the MW stellar halo has N ∼ 1−3 massive progenitors (L ≳ 108L⊙) within 10 kpc, and likely several hundred progenitors in total. We also test our method on simulations of MW-mass haloes, and find that our method is able to recover the true accreted population within a factor of 2. Future data sets will provide MDFs with orders of magnitude more stars, and this method could be a powerful technique to quantify the accreted populations down to the ultra-faint dwarf mass scale for both the MW and its satellites.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages