Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2004
    In:  Strahlentherapie und Onkologie Vol. 180, No. S1 ( 2004-6), p. 5-87
    In: Strahlentherapie und Onkologie, Springer Science and Business Media LLC, Vol. 180, No. S1 ( 2004-6), p. 5-87
    Type of Medium: Online Resource
    ISSN: 0179-7158 , 1439-099X
    Language: German
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2004
    detail.hit.zdb_id: 2003907-4
    detail.hit.zdb_id: 84983-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 13, No. 18 ( 2013-09-16), p. 9233-9268
    Abstract: Abstract. The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i) better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii) a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii) an improved scheme of polar stratospheric cloud (PSC) processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT) and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv) long transient simulations with a chemistry-climate model (CCM) updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2013
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2014
    In:  Atmospheric Chemistry and Physics Vol. 14, No. 22 ( 2014-11-27), p. 12479-12497
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 14, No. 22 ( 2014-11-27), p. 12479-12497
    Abstract: Abstract. Chlorofluorocarbons (CFCs) play a key role in stratospheric ozone loss and are strong infrared absorbers that contribute to global warming. The stratospheric lifetimes of CFCs are a measure of their stratospheric loss rates that are needed to determine global warming and ozone depletion potentials. We applied the tracer–tracer correlation approach to zonal mean climatologies from satellite measurements and model data to assess the lifetimes of CFCl3 (CFC-11) and CF2Cl2 (CFC-12). We present estimates of the CFC-11/CFC-12 lifetime ratio and the absolute lifetime of CFC-12, based on a reference lifetime of 52 years for CFC-11. We analyzed climatologies from three satellite missions, the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS), the HIgh Resolution Dynamics Limb Sounder (HIRDLS), and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). We found a CFC-11/CFC-12 lifetime ratio of 0.47±0.08 and a CFC-12 lifetime of 112(96–133) years for ACE-FTS, a ratio of 0.46±0.07 and a lifetime of 113(97–134) years for HIRDLS, and a ratio of 0.46±0.08 and a lifetime of 114(98–136) years for MIPAS. The error-weighted, combined CFC-11/CFC-12 lifetime ratio is 0.46±0.04 and the CFC-12 lifetime estimate is 113(103–124) years. These results agree with the recent Stratosphere-troposphere Processes And their Role in Climate (SPARC) reassessment, which recommends lifetimes of 52(43–67) years and 102(88–122) years, respectively. Having smaller uncertainties than the results from other recent studies, our estimates can help to better constrain CFC-11 and CFC-12 lifetime recommendations in future scientific studies and assessments. Furthermore, the satellite observations were used to validate first simulation results from a new coupled model system, which integrates a Lagrangian chemistry transport model into a climate model. For the coupled model we found a CFC-11/CFC-12 lifetime ratio of 0.48±0.07 and a CFC-12 lifetime of 110(95–129) years, based on a 10-year perpetual run. Closely reproducing the satellite observations, the new model system will likely become a useful tool to assess the impact of advective transport, mixing, and photochemistry as well as climatological variability on the stratospheric lifetimes of long-lived tracers.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2014
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Copernicus GmbH ; 2012
    In:  The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Vol. XXXIX-B5 ( 2012-07-20), p. 21-26
    In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Copernicus GmbH, Vol. XXXIX-B5 ( 2012-07-20), p. 21-26
    Abstract: Abstract. fdaReliable navigation and 3D modeling is a necessary requirement for any autonomous system in real world scenarios. German Aerospace Center (DLR) developed a system providing precise information about local position and orientation of a mobile platform as well as three-dimensional information about its environment in real-time. This system, called Integral Positioning System (IPS) can be applied for indoor environments and outdoor environments. To achieve high precision, reliability, integrity and availability a multi-sensor approach was chosen. The important role of sensor data synchronization, system calibration and spatial referencing is emphasized because the data from several sensors has to be fused using a Kalman filter. A hardware operating system (HW-OS) is presented, that facilitates the low-level integration of different interfaces. The benefit of this approach is an increased precision of synchronization at the expense of additional engineering costs. It will be shown that the additional effort is leveraged by the new design concept since the HW-OS methodology allows a proven, flexible and fast design process, a high re-usability of common components and consequently a higher reliability within the low-level sensor fusion. Another main focus of the paper is on IPS software. The DLR developed, implemented and tested a flexible and extensible software concept for data grabbing, efficient data handling, data preprocessing (e.g. image rectification) being essential for thematic data processing. Standard outputs of IPS are a trajectory of the moving platform and a high density 3D point cloud of the current environment. This information is provided in real-time. Based on these results, information processing on more abstract levels can be executed.
    Type of Medium: Online Resource
    ISSN: 2194-9034
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2012
    detail.hit.zdb_id: 2874092-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Copernicus GmbH ; 2019
    In:  The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Vol. XLII-2/W13 ( 2019-06-05), p. 1715-1722
    In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Copernicus GmbH, Vol. XLII-2/W13 ( 2019-06-05), p. 1715-1722
    Abstract: Abstract. Geometric camera calibration is a mandatory prerequisite for many applications in computer vision and photogrammetry. Especially when requiring an accurate camera model the effort for calibration can increase dramatically. For the calibration of the stereo-camera used for optical navigation a new chessboard based approach is presented. It is derived from different parts of existing approaches which, taken separately, are not able to meet the requirements. Moreover, the approach adds one novel main feature: It is able to detect all visible chessboard fields with the help of one or more fiducial markers simply sticked on a chessboard (AprilTags). This allows a robust detection of one or more chessboards in a scene, even from extreme perspectives. Except for the acquisition of the calibration images the presented approach enables a fully automatic calibration. Together with the parameters of the interior and relative orientation the full covariance matrix of all model parameters is calculated and provided, allowing a consistent error propagation in the whole processing chain of the imaging system. Even though the main use case for the approach is a stereo camera system it can be used for a multi-camera system with any number of cameras mounted on a rigid frame.
    Type of Medium: Online Resource
    ISSN: 2194-9034
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2874092-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 1991
    In:  Medical & Biological Engineering & Computing Vol. 29, No. 3 ( 1991-5), p. 242-248
    In: Medical & Biological Engineering & Computing, Springer Science and Business Media LLC, Vol. 29, No. 3 ( 1991-5), p. 242-248
    Type of Medium: Online Resource
    ISSN: 0140-0118 , 1741-0444
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 1991
    detail.hit.zdb_id: 2052667-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages