Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
  • 1
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 66, No. 5 ( 2017), p. 050501-
    Abstract: Random numbers are used to encrypt the information in the field of secure communications. According to one-time pad theory found by Shannon, the absolute security of the high-speed communication requires the ultrafast reliable random numbers to be generated in real-time. Using complex algorithms can generate pseudorandom numbers, but they can be predicted due to their periodicity. Random numbers based on physical stochastic phenomena (such as electronic noise, frequency jitter of oscillator) can provide reliable random numbers. However, their generation rates are at a level of Mbit/s typically, limited by the bandwidth of traditional physical sources. In recent years, high-speed physical random number generation based on chaotic laser has attracted much attention. Common methods of extracting random numbers are to sample and quantitate the chaotic signal in electronic domain with a 1-bit or multi-bit analog-to-digital converter (ADC) triggered by an RF clock and then post-process the original binary sequences into random numbers. However, the large jitter of the RF clock severely restricts the speed of ADC. Moreover, the existence of the subsequent post-processing process put a huge challenge to how the synchronization is kept among all the devices (e.g., XOR gates, memory buffers, parallel serial converters) by using an RF clock. Thus, to our knowledge, the fastest real-time speed of the reported physical random number generator is less than 5 Gbit/s. In this paper, we propose a novel method of generating the real-time physical random numbers by utilizing chaotic laser pulses. Through sampling the chaotic laser in all-optical domain by using a mode-locked pulsed laser, chaotic laser pulse sequences can be obtained. Then, real-time physical random numbers are obtained directly by self-delay comparing the chaotic pulse sequences with no need of RF clock nor any post-processing. Furthermore, a proof-of-principle experiment is carried out, in which an optical feedback chaotic semiconductor laser is employed as an entropy source. Experimental results show that the real-time random number sequences at rates of up to 7 Gbit/s can be achieved. The real-time speed is mainly limited by the bandwidth of the applied chaotic signal. If the chaotic laser with a higher bandwidth is adopted, the real-time generation rate can be further enhanced.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2017
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 66, No. 3 ( 2017), p. 030503-
    Abstract: Random numbers have great application value in the fields of secure communications, which are commonly used as secret keys to encrypt the information. To guarantee that the information is absolutely secure in the current high-speed communication, the applied random keys should possess a generation speed not less than the encrypted data rate, according to one-time pad theory found by Shannon (Shannon C E 1949 Bell.Syst.Tech.J. 28 656) Pseudo-random numbers generated by algorithm may easily reach a fast speed, but a certain periodicity makes them difficult to meet the aforementioned demand of information security. Utilizing physical stochastic phenomena can provide reliable random numbers, called physical random number generators (RNGs). However, limited by the bandwidth of the conventional physical sources such as electronic noise, frequency jitter of oscillator and quantum randomness, the traditional physical RNG has a generation speed at a level of Mb/s typically. Therefore, real-time and ultrafast physical random number generation is urgently required from the view of absolute security for high-speed communication today. With the advent of wideband photonic entropy sources, in recent years lots of schemes for high-speed random number generation are proposed. Among them, chaotic laser has received great attention due to its ultra-wide bandwidth and large random fluctuation of intensity. The real-time speed of physical RNG based on chaotic laser is now limited under 5 Gb/s, although the reported RNG claims that an ultrafast speed of Tb/s is possible in theory. The main issues that restrict the real-time speed of RNG based on chaotic laser are from two aspects. The first aspect is electrical jitter bottleneck confronted by the electrical analog-to-digital converter (ADC). Specifically, most of the methods of extracting random numbers are first to convert the chaotic laser into an electrical signal by a photo-detector, then use an electrical ADC driven by radio frequency (RF) clock to sample and quantify the chaotic signal in electronic domain. Unfortunately, the response rate of ADC is below Gb/s restricted by the aperture jitter (several picoseconds) of RF clock in the sample and hold circuit. The second aspect comes from the complex post-processes, which are fundamental in current RNG techniques to realize a good randomness. The strict synchronization among post-processing components (e.g., XOR gates, memory buffers, high-order difference) is controlled by an RF clock. Similarly, it is also an insurmountable obstacle to achieve an accurate synchronization due to the electronic jitter of the RF clock. In this paper, we propose a method of ultrafast multi-bit physical RNG based on chaotic laser without any post-process. In this method, a train of optical pulses generated by a GHz mode-locked laser with low temporal jitter at a level of fs is used as an optical sampling clock. The chaotic laser is sampled in the optical domain through a low switching energy and high-linearity terahertz optical asymmetric demultiplexer (TOAD) sampler, which is a fiber loop with an asymmetrical nonlinear semiconductor optical amplifier. Then, the peak amplitude of each sampled chaotic pulse is digitized by a multi-bit comparator (i.e., a multi-bit ADC without sample and hold circuit) and converted into random numbers directly. Specifically, a proof-of-principle experiment is executed to demonstrate the aforementioned proposed method. In this experiment, an optical feedback chaotic laser is used, which has a bandwidth of 6 GHz. Through setting a sampling rate to be 5 GSa/s and selecting 4 LSBs outputs of the 8-bit comparator, 20 Gb/s (=5 GSa/s4 LSBs) physical random number sequences are obtained. Considering the ultrafast response rate of TOAD sampler, the speed of random numbers generated by this method has the potential to reach several hundreds of Gb/s as long as the used chaotic laser has a sufficient bandwidth.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2017
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 68, No. 11 ( 2019), p. 110501-
    Abstract: 〈sec〉 Optical chaos has a wide range of applications in communications, such as secure communication, high-resolution lidar ranging, optical time domain reflectometer, and high-rate physical random bit generator.〈/sec〉〈sec〉 In recent years, external-cavity feedback semiconductor lasers (ECLs) are the most common chaotic laser generation systems due to their characteristics of wide bandwidth, large amplitude, and simple structure, and the dynamic characteristics of chaotic signals have attracted much attention. However, limited by the relaxation oscillation of the laser, the energy of the chaotic signal directly generated by ECL is mainly concentrated at high relaxation oscillation frequency. Thus, the low-frequency component encounters the problem of energy loss.〈/sec〉〈sec〉 In practical applications, the signal detection/acquisition device usually responds to a 3-dB low-pass filtering characteristic. Therefore, the available effective bandwidth of the chaotic signal should actually be 3-dB bandwidth. The lack of low-frequency components will limit the energy utilization rate of chaotic signals and restrict the relevant performances of chaotic applications (such as reliability and transmission of chaotic secure communication, randomness and generation rate of physical random bits, measurement accuracy and range of lidar ranging or optical time-domain reflectometer).〈/sec〉〈sec〉 In the paper, we propose a broadband chaos generation scheme with simple structure and losing no low-frequency components. Specifically, we experimentally analyze the radio frequency (RF) spectra of the single-mode and the multi-mode output from an optical feedback Fabry-Perot (FP) semiconductor laser after and before filtering. The experimental results show that comparing with the multi-mode chaotic signal, the low-frequency energy of the single-mode chaotic spectrum is enhanced by 25 dB, and the 3-dB bandwidth of the single-mode chaotic signal can reach 6 GHz. Further theoretical analysis demonstrates that the enhancement of low-frequency component in the single-mode chaotic signal is caused by the mode-competing in multi-mode laser. It is concluded that this method can well solve the problem of low-frequency energy loss in conventional optical feedback chaotic systems, and is beneficial to improving the energy utilization rate of chaotic signals, which is of great significance for improving the performance of chaotic secure communication, random bit generation, lidar ranging, optical time domain reflectometer, and other relevant applications. 〈/sec〉
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2019
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    AIP Publishing ; 2010
    In:  Journal of Applied Physics Vol. 108, No. 4 ( 2010-08-15)
    In: Journal of Applied Physics, AIP Publishing, Vol. 108, No. 4 ( 2010-08-15)
    Abstract: Photoinduced damage behavior of mesotetraphenylporphyrin (TPP) under one- and two-photon excitation with femtosecond laser pulses is investigated in the present work. Quenching in the luminescent intensity is observed. Results suggest that laser irradiation on TPP mainly causes two simultaneously occurring photoprocesses: photodamage and formation of a porphine-type photoproduct. The damage rate exhibits a linear dependence on the incident light power in one-photon excitation, whereas in two-photon excitation, the power dependence of the damage rate turns out to be exponential. The photoproduct formed in one- and two-photon excitation is identical. This product, which is observed to possess superior photostability and two-photon absorbing ability compared with the original TPP sensitizer, is likely to be treated as a secondary photosensitizer in the activation process of photodynamic therapy (PDT). This work might be helpful for the drug evaluation in the practical application of PDT.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2010
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Nano Energy, Elsevier BV, Vol. 81 ( 2021-03), p. 105636-
    Type of Medium: Online Resource
    ISSN: 2211-2855
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 2648700-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 61, No. 6 ( 2012), p. 064211-
    Abstract: The longitudinal ultrasonic wave launched by ns-laser pulse is used to measure the temperature dependence of the elastic modulus C33 of single crystal sapphire. The result shows that in a temperature from room temperature to 1000 ℃ the elastic modulus of sapphire C33 reduces as the temperature increases, following the relationship C33 = - 1.541 10-5T2 - 0.021T + 498.3. In this method, the ablation mechanism is adopted to launch strong longitudinal waves, therefore, the result is accurate that the error of the measurement is estimated to be no more than 0.1%.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2012
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2015
    In:  Nanoscale Research Letters Vol. 10, No. 1 ( 2015-12)
    In: Nanoscale Research Letters, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2015-12)
    Type of Medium: Online Resource
    ISSN: 1931-7573 , 1556-276X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 2253244-4
    detail.hit.zdb_id: 3149496-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2015
    In:  Nanoscale Research Letters Vol. 10, No. 1 ( 2015-12)
    In: Nanoscale Research Letters, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2015-12)
    Abstract: We have demonstrated a flexible resistive random access memory unit with trilayer structure by atomic layer deposition (ALD). The device unit is composed of Al 2 O 3 /HfO 2 /Al 2 O 3 -based functional stacks on TiN-coated Si substrate. The cross-sectional HRTEM image and XPS depth profile of Al 2 O 3 /HfO 2 /Al 2 O 3 on TiN-coated Si confirm the existence of interfacial layers between trilayer structures of Al 2 O 3 /HfO 2 /Al 2 O 3 after 600°C post-annealing. The memory units of Pt/Al 2 O 3 /HfO 2 /Al 2 O 3 /TiN/Si exhibit a typical bipolar, reliable, and reproducible resistive switching behavior, such as stable resistance ratio ( 〉 10) of OFF/ON states, sharp distribution of set and reset voltages, better switching endurance up to 10 3  cycles, and longer data retention at 85°C over 10 years. The possible switching mechanism of trilayer structure of Al 2 O 3 /HfO 2 /Al 2 O 3 has been proposed. The trilayer structure device units of Al 2 O 3 /HfO 2 /Al 2 O 3 on TiN-coated Si prepared by ALD may be a potential candidate for oxide-based resistive random access memory.
    Type of Medium: Online Resource
    ISSN: 1931-7573 , 1556-276X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 2253244-4
    detail.hit.zdb_id: 3149496-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 66, No. 12 ( 2017), p. 124203-
    Abstract: Random numbers play an important role in many fields, including information security, testing and engineering practice. Especially in information security, generation of secure and reliable random numbers, they have a significant influence on national security, financial stability, trade secrets and personal privacy. Generally, random number generators can be classified as two main types: pseudo random number generators and physical random number generators. Pseudo random numbers with high speed are generated by software algorithms, but the inherent periodicity will cause serious hidden dangers when they are used in information security. Random numbers based on physical entropy sources (such as electronic thermal noise, frequency jitter of oscillator, quantum randomness) can produce reliable random numbers. However, due to the limitation of traditional physical source bandwidth, their generation speeds are at a level of Mbit/s typically, which cannot meet the needs of the current high-speed and largecapacity communication. In 2008, Uchida et al. (2008 Nat. Photon. 2 728) realized the physical random number of 1.7 Gbit/s by using a wideband chaotic laser for the first time. The emergence of wideband physical entropy sources such as chaotic laser greatly promote the rapid development of the physical random number generators. As far as we know, a semiconductor laser can generate wideband chaotic signals under external disturbances such as optical feedback, optical injection or photoelectric feedback. However, compared with the structures of other two lasers, the structure of the optical feedback semiconductor laser is simple and easy to integrate. Therefore, chaotic signals have received great attention to produce high-speed physical random number extracted from the optical feedback semiconductor laser. In the reported schemes, a variety of post-processing methods are used to improve the speed and randomness of random numbers. Besides, optimizing the chaotic entropy source can also improve the performance of random number. So far, the influence of internal parameters on the dynamic characteristics of semiconductor lasers has attracted wide attention. The linewidth enhancement factor is one of the key parameters for a semiconductor laser. The values of linewidth enhancement factor are different, depending on the type of semiconductor laser. The existence of linewidth enhancement factor results in a large number of unstable dynamic characteristics of semiconductor lasers. Therefore, it is of great significance for studying the influence of the linewidth enhancement factor on performance of random numbers. In this paper, we focus on the influence of the linewidth enhancement factor on the randomness of the obtained random numbers. The time delay characteristics and complexity are two important parameters to measure the quality of chaotic signals. The simulation results show that with the increase of the linewidth enhancement factor, the time delay characteristic peak of the chaotic signal from an optical feedback semiconductor laser decreases gradually, meanwhile, the maximum Lyapunov exponent of chaotic signal increases gradually. The randomness of random numbers, generated by the chaotic signal from the optical feedback semiconductor laser under different linewidth enhancement factors, is tested by NIST SP 800-22. The test results show that semiconductor laser with larger linewidth enhancement factor is chosen as a physical entropy source to generate random numbers with high quality.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2017
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Trans Tech Publications, Ltd. ; 2011
    In:  Advanced Materials Research Vol. 239-242 ( 2011-5), p. 2953-2957
    In: Advanced Materials Research, Trans Tech Publications, Ltd., Vol. 239-242 ( 2011-5), p. 2953-2957
    Abstract: In the paper, ultrafine quartz, sericite and wollastonite modified with silane coupling agents KH-570 were incorporated into natural rubber(NR). The synergisitc effect on reinforcing NR caused by the three types of fillers was investigated under a same vulcanizing formulation and process. The mechanical properties and microstructure of the vulcanizates were conducted through mechanical testing and scanning electron microscopy(SEM). The results of mechanical properties tests showed that when one of these three fillers was loaded within NR alone, the tear strength and permanent set of NR vulcanizates filled with quartz could reach 27.61 kN m -1 and 16.0%, respectively, stress at 300% elongation of NR vulcanizates filled with sericite could attain 4.69 MPa, and the tensile strength and elongation at break of NR vulcanizates filled with wollastonite could get to16.64 MPa and 951.21%, respectively. Under the condition that the filler loadings were 40 parts per hundred parts of rubber(phr), and the mass ratio of quartz, sericite, wollastonite was 1:1:3, the tensile strength and tear strength could come up to 17.33MPa and 27.54 kN m -1 . The mechanical properties of NR composites filled with mixtures were found to be complemented by those three types of minerals. SEM results revealed that the fillers are well dispersed in the rubber matrix in the parallel arrangement with a densest stack, and the synergistic reinforcment effect of the fillers on NR was obvious.
    Type of Medium: Online Resource
    ISSN: 1662-8985
    URL: Issue
    Language: Unknown
    Publisher: Trans Tech Publications, Ltd.
    Publication Date: 2011
    detail.hit.zdb_id: 2265002-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages