Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Elsevier BV ; 2004
    In:  Clinical Neuroscience Research Vol. 4, No. 3-4 ( 2004-12), p. 215-225
    In: Clinical Neuroscience Research, Elsevier BV, Vol. 4, No. 3-4 ( 2004-12), p. 215-225
    Type of Medium: Online Resource
    ISSN: 1566-2772
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2004
    detail.hit.zdb_id: 2050446-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 1601-1601
    Abstract: Cancer immunotherapies are revolutionizing cancer treatment. Unfortunately, a large proportion of patients with solid tumors do not respond to currently available immune-therapeutics. The lack of response is due to a variety of mechanisms tumors adopt to avoid immune mediated clearance. The multiplicity of immunosuppressive mechanisms operational in the tumor microenvironment may not be overcome by single agents and require interventions at multiple control points. However, systemic exposure to combinations of immunoregulators may result in severe, dose limiting, acute and chronic toxicities that might be prevented if the effect of these agents is focused to the tumor microenvironment. We are engaged in the discovery of a novel class of immuno-oncology drugs aimed at maximizing the effect of immunoregulatory molecules in the tumor microenvironment and minimizing systemic adverse effects. These drugs incorporate plasmids, engineered to program tumor cells to produce and secrete immune-regulatory proteins, within hyaluronic acid (HA) coated lipid nanoparticles, called GAGomers, which specifically target tumor cells that overexpress activated HA receptors (GAG-pDNA). GAG-pDNA based therapeutics promise highly potent but localized activation of the immune system exclusively in the tumor microenvironment following systemic administration, leading to the destruction of tumor cells by activated immune cells without debilitating toxic side effects. To demonstrate the feasibility of the GAG-pDNA approach we have incorporated a plasmid directing the expression of murine IL-2 into GAGomers (GAG-pIL2) and assessed the anti-tumor activity of the construct after systemic delivery into tumor bearing mice. GAG-pIL2 administration resulted in statistically significant inhibition of tumor growth, which correlated with elevated IL-2 levels in the tumor and increased infiltration of T-cells into the tumor microenvironment. These experiments demonstrate the feasibility of programming tumor cells using GAG-pDNA to produce and secrete immunoregulatory molecules into the tumor microenvironment and trigger robust anti-tumor immune responses. Citation Format: Genia Alpert, David Altreuter, Sunil Anamandla, Arlyssa Birt, Guy Cinamon, Keren Cohen Merimi, Orli Even Or, Nir Gefen, Nadia Gurvich, Jeno Gyuris, Lorena Lerner, Adi Mondshine, Hong Wang. Anti-tumor effect of GAGomer-mediated intra-tumoral IL-2 expression following systemic administration [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 1601. doi:10.1158/1538-7445.AM2017-1601
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: The FASEB Journal, Wiley, Vol. 35, No. S1 ( 2021-05)
    Type of Medium: Online Resource
    ISSN: 0892-6638 , 1530-6860
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1468876-1
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 112, No. 11 ( 2008-11-16), p. 3740-3740
    Abstract: L3MBTL1 is a polycomb gene located in 20q12, within the common deleted region identified in patients with 20q deletion associated with polycythaemia vera (PV), myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML). L3MBTL1 is expressed within CD34+ haematopoietic progenitor cells from which myeloid malignancies arise and its Drosophila homologue encodes a tumour suppressor protein. L3MBTL1 represents then a candidate target gene in 20q deletion patients. To gain insight into the role of L3MBTL1 in hematopoiesis we knocked down the level of L3MBTL1 mRNA through lentiviral expression of short hairpin RNAs in CD34+ hematopoietic stem/progenitor cells isolated from human cord blood (CB) cells. We achieved an approximately 80% drop in endogenous L3MBTL1 mRNA level, as determined using quantitative RT-PCR. Transduced and sorted CD34+ GFP+ CB cells were plated in liquid cultures and induced to cytokine-driven differentiation. The effect of L3MBTL1-knock down was assessed by colony assays and by fluorescence-activated cell sorting (FACS), using lineage–specific cell surface markers. We demonstrate that the knock down (KD) of L3MBTL1 remarkably accelerates the differentiation of hematopoietic CD34+ cells into erythrocytes. The relative percentage of mature erythroid precursors cells, defined as CD71+ and Glycophorin A+ cells, consistently increased in the L3MBTL1-KD population, as the CD34+ cells reached this advanced stage of erythroid differentiation in fewer days than control cells. As confirmation, Giemsa staining after cytospin preparations of L3MBTL1-KD cells showed more mature morphology compared to the control cells, and benzidine staining revealed many more Hb containing-positive cells in the L3MBTL1-depleted cell population compared to the control. Monitoring of globin gene expression demonstrated that L3MBT-Knock down is involved in the regulation of only a subset of these genes, primarily the expression of the epsilon and zeta globin genes, the embryonic globin genes belonging to the beta and alpha globin gene clusters respectively. In addition to these effects a significant slowing of proliferation was seen, which likely reflects the increased differentiation of these cells. We have previously identified a role for L3MBT in binding histones H1 and H4 that contain monomethylated and dimethylated lysine residues H1k2b and H4k20 (Kalakonda et al. 2008) and compacting chromatin (Trojer et al. Cell 2007). Precisely how this feature of L3MBTL1 function in regulating the erythroid differentiation of hematopoietic cells is unknown. We however link lack of L3MBTL1 with the possible pathogenesis of PV associated with 20q deletion. We will present additional data that attempt to define the kinetics of alpha-like and beta-like globin gene expression during the erythroid maturation of L3MBTL1-KD cells in culture and to investigate a supposed synergism with the known molecular pathways of normal and malignant erythroid differentiation.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Elsevier BV ; 2003
    In:  Journal of Biological Chemistry Vol. 278, No. 35 ( 2003-08), p. 33067-33077
    In: Journal of Biological Chemistry, Elsevier BV, Vol. 278, No. 35 ( 2003-08), p. 33067-33077
    Type of Medium: Online Resource
    ISSN: 0021-9258
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2003
    detail.hit.zdb_id: 2141744-1
    detail.hit.zdb_id: 1474604-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2023
    In:  Cancer Research Vol. 83, No. 7_Supplement ( 2023-04-04), p. 1668-1668
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 1668-1668
    Abstract: A subset of tumor cells escapes apoptotic and necroptotic death when subjected to chemo- or targeted therapy thereby entering a transient reversible less-proliferative “tolerant state.” Upon continuous drug treatment, these tumor cells become drug resistant, leading to metastases and cancer relapse. A long-standing goal in oncology has been to develop therapeutics to effectively target both cell states. Growing published evidence suggests that accumulation of reactive oxygen species and lipid remodeling make tolerant and resistant tumor cells more vulnerable to ferroptotic mode of cell death. To this end, we here characterize the activity of a proprietary inhibitor of GPX4, an enzyme that safeguards against ferroptosis, across a panel of tolerant and resistant cell line models. Drug tolerant and resistant cancer cell lines spanning three indications were generated by applying continuous treatments with relevant standard-of-cares (SOC) in vitro for short or long durations, respectively. Age-matched control cell lines were derived in parallel by treatment of parental cells with DMSO. Cells were subjected to high dose of SOC for nine days to generate tolerant lines, or to increased therapeutic doses of SOC over three months to generate resistant lines, after which resistance to SOCs was confirmed. In accordance with our hypothesis, we found that drug tolerant lines demonstrated enhanced sensitivity to GPX4 inhibition compared to age-matched control lines. Furthermore, we noted that resistant tumor cell lines retained exquisite sensitivity to GPX4 inhibition across all indications while demonstrating up to 1000-fold resistance to SOCs. In summary, we found that cell line models which evade cell death upon treatment with chemo- or targeted therapies continued to present vulnerability to ferroptosis induction across both cell states. Given the heterogeneity in responses to drug-induced cell-states, understanding the mechanisms of differential drug sensitivity to GPX4 inhibition may help in formulating successful strategies for targeting this relevant cell population in the clinic, thereby limiting cancer progression and/or improving curative potential. Citation Format: Taronish Dubash, Maria Cristina Munteanu, Shrouq Farah, Cristian Nunez, Laurence Jadin, Branko Radetich, Darby Schmidt, Nadia Gurvich. Targeting drug-induced tolerant & resistant cell populations by novel ferroptosis inducer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 1668.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2004
    In:  Cancer Research Vol. 64, No. 3 ( 2004-02-01), p. 1079-1086
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 64, No. 3 ( 2004-02-01), p. 1079-1086
    Abstract: Valproic acid (VPA), a well-established therapy for seizures and bipolar disorder, has recently been shown to inhibit histone deacetylases (HDACs). Similar to more widely studied HDAC inhibitors, VPA can cause growth arrest and induce differentiation of transformed cells in culture. Whether this effect of VPA is through inhibition of HDACs or modulation of another target of VPA has not been tested. We have used a series of VPA analogs to establish a pharmacological profile for HDAC inhibition. We find that VPA and its analogs inhibit multiple HDACs from class I and class II (but not HDAC6 or HDAC10) with a characteristic order of potency in vitro. These analogs also induce hyperacetylation of core histones H3 and H4 in intact cells with an order of potency that parallels in vitro inhibition. VPA and VPA analogs induce differentiation in hematopoietic cell lines in a p21-dependent manner, and the order of potency for induction of differentiation parallels the potencies for inhibition in vitro, as well as for acetylation of histones associated with the p21 promoter, supporting the argument that differentiation caused by VPA is mediated through inhibition of HDACs. These findings provide additional evidence that VPA, a well-tolerated, orally administered drug with extensive clinical experience, may serve as an effective chemotherapeutic agent through targeting of HDACs.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2004
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 22, No. 12_Supplement ( 2023-12-01), p. B099-B099
    Abstract: The epidermal growth factor receptor (EGFR) is a crucial signaling protein involved in regulating cellular growth, survival, and proliferation. EGFR mutations, particularly in non-small cell lung cancer (NSCLC), have been extensively studied due to their role in driving tumor progression and resistance to conventional therapies. While EGFR-mutant tumors initially respond well to EGFR inhibitors, emergence of resistance remains a significant challenge. Ferroptosis is a recently discovered form of regulated cell death characterized by accumulation of lipid peroxides and oxidative stress. It has gained attention as a potential therapeutic strategy in combating drug resistance. However, the vulnerability of various EGFR-mutant and resistant NSCLC cells to ferroptosis induction remains poorly understood. To bridge the existing knowledge gap, we investigated the responsiveness of both EGFR-mutant and their resistant counterpart NSCLC cell lines to ferroptosis induction. Interestingly, NSCLC cell lines and patients’ tumors which harbor EGFR mutations are distinct from those carrying STK11 and KEAP1 mutations, which are known to contribute to resistance to ferroptosis. This observation prompted us to test whether ferroptosis inducers could effectively target this specific subset of NSCLC. In our experimental approach, we first utilized a panel of commercially available EGFR mutant cell lines (n=3), including one harboring T790M resistance mutation, which is a common mechanism of acquired resistance to first-generation inhibitors. We subjected the EGFR-mutant cell lines in vitro to a process of acquiring resistance against three generations of EGFR inhibitors (n=4). Subsequently, upon confirmation of resistance, we evaluated their susceptibility to our proprietary ferroptosis inducer. Exome sequencing data of EGFR-inhibitor resistant cell lines and their age-matched control cell lines revealed that the former acquired genetic alterations that have previously been found to confer resistance in EGFR-inhibitor resistant patients’ tumors, suggesting that our approach is valid for modeling relevant resistance mechanisms. Our results indicate that both EGFR-mutant and resistant cell lines exhibit sensitivity to ferroptosis induction. Furthermore, we observed that EGFR-mutant patient-derived cells, which are refractory to EGFR inhibitors of several generations, were strongly cytostatic to our ferroptosis inducer. These findings provide valuable insights into the interplay between EGFR mutations, drug resistance, and ferroptosis. Exploiting the vulnerability of EGFR-inhibitor resistant NSCLC cells to ferroptosis could offer novel therapeutic options for overcoming drug resistance in EGFR-driven cancers. Further investigations into the underlying molecular mechanisms of ferroptosis inducers in NSCLC are warranted for the development of effective therapies. Citation Format: Taronish Dubash, Maria Cristina Munteanu, Cristian Nunez, Shrouq Farah, Laurence Jadin, Branko Radetich, Francesco M Marincola, Darby Schmidt, Nadia Gurvich. Targeting Non Small Cell Lung Cancer EGFR-Mutant and EGFR-Inhibitor resistant cell lines by ferroptosis induction: A potential therapeutic approach [abstract]. In: Proceedings of the AACR-NCI-EORTC Virtual International Conference on Molecular Targets and Cancer Therapeutics; 2023 Oct 11-15; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2023;22(12 Suppl):Abstract nr B099.
    Type of Medium: Online Resource
    ISSN: 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2062135-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Biomaterials, Elsevier BV, ( 2024-7), p. 122731-
    Type of Medium: Online Resource
    ISSN: 0142-9612
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2024
    detail.hit.zdb_id: 2004010-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 2296-2296
    Abstract: Abstract 2296 The Hippo signaling pathway, first discovered in Drosophila, is emerging as an important regulator of stem cell behavior. Upon still-unclear upstream stimuli, the hippo pathway kinase cascade phosphorylates and inhibits the function of YAP, a transcription coactivator, by inducing its cytoplasmic retention. While recent evidences indicate that inhibition of YAP affects cell fate decisions, and proliferation, in many tissues, little is known about the relevance of this pathway in hematopoiesis. However, the interaction of YAP with Smad1, identified in flies and human cells (Alarcon C. et al. Cell 2009), prevents smurf-mediated Smad1 degradation, potentially enhancing BMP signaling. Our ongoing studies have indentified crosstalk between the BMP4 and the Hippo pathways in hematopoietic cells, and in induced-pluripotent stem (iPS) cells that we differentiated towards the erythroid lineage. This crosstalk involves the chromatin-binding, Polycomb protein L3MBTL1, which clearly regulate the effects of BMP on the erythroid differentiation of hematopoietic stem/progenitor cells and on fetal globin gene expression. We find that the Lats2 kinase, a core component of the Hippo pathway, physically interacts with L3MBTL1 and that treatment with BMP4 or Erythropoietin decreases the expression of both proteins in various hematopoietic cells, including primary human cord blood-derived CD34+ cells. By altering L3MBTL1 levels in K562 cells, we were able to show that the L3MBTL1-Lats2 interaction enhances Lats-mediated phosphorylation and the cytoplasmic retention of YAP. Furthermore, L3MBTL1-depleted iPS cells have an enhanced smad-mediated transcriptional response; by analyzing the gene expression profile of these cells, we found increased expression of several BMP target genes (such as HHEX and ID genes), suggesting that L3MBTL1 negatively titrates the BMP4 signaling pathway at least in part by affecting YAP phosphorylation and localization. Gene Set Enrichment Analysis confirmed enrichment of many smad-related genes, and yet, these cells presented enhanced smad1/5/8 phosphorylation by WB analysis, indicating that BMP4 signaling is triggered by L3MBTL1 depletion. We also found that hematopoietic differentiation of L3MBTL1-KD iPS cells generates high-fetal globin gene expressing erythroid progeny, suggesting a role for the BMP4 signaling pathway and the targeting of L3MBTL1 in the treatment of hemoglobinopathies. To further evaluate the effect of BMP4 signaling on hematopoietic cells that lack L3MBTL1, we analyzed the stress erythroid response of L3MBTL1 KO mice: while no difference was observed at baseline in the null mice compared to wt littermates, the L3mbtl1 null mice had a more severe anemia, with increased leukocytosis, and thrombocytosis post-hydrazine (PHZ) or Epo. We found a significant increase in the colony-forming ability of the l3mbtl1 null spleen and bone marrow cells, compared to controls, as well as increased spleen size and an expansion of the spleen erythroid compartment. Thus, l3mbtl1 null hematopoietic stem cells are more sensitive to the PHZ-mediated cytokine storm, which includes BMP4. Interestingly, the L3mbtl1 null BM and spleen cells showed diminished expression of Lats2 and phospho-YAP, consistent with our in vitro findings. In conclusion, these investigations have shown that L3MBTL1 not only negatively titrates the BMP4 signaling pathway, but also provides a nodal point for crosstalk between the BMP4 and Hippo signaling pathways in erythropoiesis. Thus, these data provide insights into possible novel treatments for genetic red cell disorders (such as β-thalassemia) and for acquired bone marrow failure syndromes such as Epo-resistant anemia. Disclosures: Levine: Agios Pharmaceuticals: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages