Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Leukemia Research, Elsevier BV, Vol. 39, No. 11 ( 2015-11), p. 1172-1177
    Type of Medium: Online Resource
    ISSN: 0145-2126
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 2008028-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 126, No. 1 ( 2015-07-02), p. 42-49
    Abstract: There is a strong negative association between comorbidities at diagnosis and overall survival. There is no negative effect of comorbidities on remission rates and progression to advanced phases in CML.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 114, No. 22 ( 2009-11-20), p. 2615-2615
    Abstract: Abstract 2615 Poster Board II-591 Introduction: The majority of patients with chronic myeloid leukemia (CML) in chronic phase achieve and maintain complete cytogenetic remission after frontline therapy with imatinib mesylate. In case of resistance or intolerance to imatinib, a switch to second generation tyrosine kinase inhibitors, such as nilotinib or dasatinib, is recommended. Mutations in the BCR-ABL kinase domain and various BCR-ABL independent mechanisms, e.g. clonal evolution and pathways bypassing BCR-ABL are considered as leading causes of resistance. Efficacy of imatinib and nilotinib depends on intracellular drug levels, which are influenced by the activity of the efflux transporter protein multidrug resistance 1 (MDR1, ABCB1 or P-gp). MDR1 involvement in the pathogenesis of resistance to nilotinib was postulated (Mahon et al., Cancer Res 2008). Aim: Hence, we evaluated the predictive impact of MDR1 expression levels as well as pre-treatment BCR-ABL load from imatinib resistant CML patients on molecular responses during second line therapy with nilotinib. Patients and Methods: Imatinib resistant patients in chronic phase CML treated with nilotinib (n=94) were investigated. Baseline BCR-ABL mutations were detected by D-HPLC and direct sequencing. MDR1 and BCR-ABL mRNA expression levels were determined by quantitative reverse transcription PCR (qRT-PCR) using LightCycler™ technology, normalized against beta-glucuronidase (GUS) expression and standardized according to the international scale (IS). Log-rank tests were performed to analyze and compare the time to achieve major (MMR, BCR-ABL IS ≤0.1%) or good molecular response (BCR-ABL IS ≤1%). Results: Within 12 or 24 months of nilotinib therapy, 22% and 27% of patients achieved MMR, and 37% and 41% of patients attained good molecular response, respectively. After 12 or 24 months, patients with MDR1/GUS ratios ≥2.5 (60%) achieved MMR in an estimated rate of 45% and 53%, whereas those with initial MDR1/GUS ratios 〈 2.5 (40%) showed MMR in 14% and 14%, respectively (p=0.034). Good molecular response was attained in 52% vs 49% and 63% vs 66% after 12 and 24 months (ns). Further, BCR-ABL load prior to nilotinib revealed a significant impact on consecutive molecular response. BCR-ABL IS 〈 28% separated best concerning prediction of MMR after 12 and 24 months (53% vs 25% and 53% vs 34%, p=0.002) and good molecular response (62% vs 44% and 85% vs 51%, p=0.004). Combining the two methods implied the definition of a low risk group (20%; pre-treatment BCR-ABL IS 〈 28% and MDR1/GUS ratios ≥2.5) in contrast to a high risk group (27%; pre-treatment BCR-ABL IS ≥28% and MDR1/GUS 〈 2.5) achieving MMR in 67% vs 6% of the patients after 24 months (p=0.0004). No relevant differences were found looking at subgroups of patients bearing BCR-ABL mutations. Conclusions: Pre-treatment expression levels of MDR1 and BCR-ABL tumor load predicts molecular responses of imatinib resistant chronic phase CML patients within the first two years of treatment with nilotinib. Disclosures: Woodman: Novartis Oncology: Employment. Hochhaus:Novartis : Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 1494-1494
    Abstract: The activity of the drug efflux transporter protein MDR1 reduces the intracellular concentration of nilotinib and thereby impairs its efficacy. Nilotinib has been shown to be efficacious in imatinib-resistant patients. In the face of competing second-generation tyrosine-kinase inhibitors (TKI), early identification of favorable responders is crucially important. We have reported the unexpected positive prognostic impact of high MDR1 gene expression at time of imatinib resistance for subsequent 2nd line nilotinib treatment. Here, we present (i) a 48-month follow-up of our clinical data and (ii) additional functional analyses studied in an established in vitro, transposon-based vector system with stable siRNA mediated knockdown of MDR1. Aim We sought to assess (i) whether high MDR1 expression remains associated with improved cumulative rates of major molecular remission (MMR), complete cytogenetic remission (CCyR) and patients’ outcome (progression-free survival, PFS) after 48 months and (ii) the impact of MDR1 expression on nilotinib in vitro sensitivity. Methods (i) We analyzed 83 patients resistant to imatinib frontline treatment in chronic phase CML treated with nilotinib 400 mg bid within the CAMN107A2101 trial. MDR1 and BCR-ABL mRNA expression levels were determined by qRT-PCR using LightCycler™ technology, normalized against beta-glucuronidase (GUS) and standardized according to the international scale (IS). Log-rank tests were performed to compare PFS and the cumulative incidences (CI) of MMR and CCyR at 48 months. (ii) MDR1high overexpressing (K562-DoxH1) and MDR1low knockdown (K562-DoxMM) cell lines were used for in vitro testing (Rumpold et al., Exp Hematol 2005). Results (i) (a) At 24 and 48 months, patients with MDR1/GUS ratios ≥2.0 attained MMR in 39% and 41%, CCyR in 58% (at both time points), and PFS rates of 75% and 67%, whereas patients with initial MDR1/GUS ratios 〈 2.0 had significantly worse response and PFS rates, i.e. MMR in 13% and 16% (p=0.014), CCyR in 35% and 39% (p=0.044), and PFS of 50% and 46% (p=0.032). (b) BCR-ABL tumor burden prior to nilotinib revealed a significant impact on molecular response rates. BCR-ABLIS 〈 28% separated best concerning cumulative incidences of MMR by 24 and 48 months (41% vs 21% and 48% vs 21%, p=0.009). (c) Nilotinib in vitro sensitivity of BCR-ABL kinase domain mutations at time of imatinib resistance was associated with improved PFS under nilotinib therapy: patients without any mutation showed PFS rates of 71% and 63% at 24 and 48 months, whereas those with either sensitive mutations, intermediately sensitive mutations or mutations with unknown IC50attained PFS rates of 67% and 61%; patients with mutations resistant to nilotinib achieved PFS rates of 23% at both time points (p=0.01). (ii) Even though MDR1high K562 cells are less sensitive than MDR1low expressing cells, nilotinib (applying doses from 0.01 µM up to 0.5 µM) was still able to significantly impede proliferation of both MDR1high and MDR1low, whereas imatinib-mediated growth inhibition was only seen in MDR1low, but not in MDR1highcells. Conclusion (i) At the time of imatinib-resistance, a high MDR1 gene expression predicts favorable MMR, CCyR, and PFS on consecutive 2nd line nilotinib treatment. As shown earlier, single nucleotide polymorphisms (SNPs) within MDR1 (1236CT/TT and 2677GT/TT) were significantly associated with higher MDR1 expression. (Agrawal et al., ASH 2010) (ii) Our functional data support our clinical observation that nilotinib remains efficacious in MDR1 overexpressing cells, whereas even dose-escalated imatinib does not reverse resistance. High MDR1 gene expression might select patients whose mode of resistance is essentially determined by increased efflux activity of MDR1 and not by other pathways of resistance that cannot be overcome by nilotinib. Altogether, our data might be used for the clinical risk stratification in case of imatinib resistance before switching to nilotinib and are undergoing prospective validation within the ENEST1st study. Disclosures: Saussele: Novartis: Honoraria, Research Funding, Travel Other; BMS: Honoraria, Research Funding, Travel, Travel Other; Pfizer: Honoraria. Purkayasatha:Novartis: Employment. Woodman:Novartis: Employment. Hehlmann:BMS: Consultancy, Research Funding; Novartis: Research Funding. Hochhaus:Novartis: Consultancy, Honoraria, Research Funding, Travel Other; BMS: Consultancy, Honoraria, Research Funding; Pfizer: Consultancy, Honoraria; Ariad: Consultancy, Honoraria. Müller:Novartis: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Honoraria, Research Funding; Ariad: Consultancy, Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 2495-2495
    Abstract: Abstract 2495 Introduction: Response to therapy in patients with chronic myeloid leukemia (CML) is monitored by both cytogenetic assessment of bone marrow metaphases and quantitative reverse transcriptase polymerase chain reaction (RT-PCR) of peripheral blood samples. Although standardization of BCR-ABL quantification according to the international scale (IS) provides results comparable between different laboratories, current treatment recommendations are still predominantly based on cytogenetic analyses. The aim of this work was to determine a BCR-ABL expression level according to the IS (BCR-ABLIS) which corresponds to complete cytogenetic remission (CCyR). Patients: 1,329 paired cytogenetic and molecular assessments of 557 chronic phase CML patients on imatinib-based therapies from the German CML study IV, all during follow-up, have been considered. Median number of samples per individual was 3 (range 1–24). Only molecular evaluations derived from peripheral blood and from patients expressing b2a2 and/or b3a2 BCR-ABL transcripts were considered. Participating laboratories provided results standardized according to the international scale. For cytogenetic analyses at least 20 metaphases, evaluated by conventional chromosome banding analysis, were required. Paired molecular and cytogenetic analyses were performed within an interval of 〈 3 days. Methods: Data was split randomly at the rate of 2:1 into learning and validation sample. 10,000 subsamples that contained no more than one observation per patient were repeatedly drawn randomly from the original learning sample, according to the bootstrap method Using these subsamples, the BCR-ABLIS expression level providing the best discrimination between CCyR and no CCyR was determined choosing the smallest p-value of the exact Fisher test. Only cut-off levels with p-values which were significant after adjustment for multiple testing were considered. To confirm these results, again 10,000 subsamples were randomly drawn from the original validation sample. For the cut-off points discovered in the learning sample, sensitivity and specificity for predicting a CCyR from the molecular data and the p-values from the Fisher test were calculated within each of these subsamples. Results: 1329 cytogenetic analyses using a median of 25 metaphases (range, 20–30) of which 75% were in CCyR were compared with 1329 molecular data with a median BCR-ABLIS expression level of 0.055% (range, 0–237%). In the learning sample the most frequently found BCR-ABLIS value was 0.35%, but all values between 0.2% and 1.1% were similarly well-suited for separating between patients in CCyR and not in CCyR. Based on this range, two potential cut-off levels were chosen for validation, 0.35% and 1%. While the first one represents a value, where one would rather expect to underestimate the number of CCyRs, the latter represents a value, where one would rather expect to overestimate the number of CCyRs. For the level of 0.35% the p-value was below 0.05 for 67.2% of the 10,000 subsamples, the median p-value was 0.017. With a median value of 88.4%, CCyR cases were correctly identified while cases that were not in CCyR were correctly assessed with a median rate of 71.4%. For the 1% BCR-ABLIS level, the p-value was below 0.05 for 72.0% of the 10,000 subsamples with a median p-value of 0.011. At a median value of 96.0%, CCyR cases were correctly identified while cases that were not in CCyR were correctly assessed with a median rate of 60.0%. When restricting on BCR-ABLIS values between 0.1 and 10.0%, the median concordance rate was 76%. Conclusions: Compared to molecular analyses, cytogenetic assessment is imprecise and limited with regard to sensitivity. Thus, it is not surprising to find a range of molecular data equivalent to CCyR but not a one-to-one cut-off point. However, for practical reasons it seems desirable to have such a cut-off point. Since lack of CCyR is considered a failure criterion according to the ELN treatment recommendations, it is suggested to keep the proportion of patients small that are considered erroneously not to be in CCyR. Additionally, a considerable amount of patients in major molecular remission or even better is present in the sample, so there might be a slight bias towards lower cut-off values. Thus, BCR-ABLIS expression of 〈 1% is considered to be equivalent to CCyR in chronic phase CML patients treated with imatinib with a median concordance rate of 89%. Disclosures: Haferlach: MLL Munich Leukemia Laboratory: Equity Ownership. Schnittger:MLL Munich Leukemia Laboratory: Equity Ownership. Hochhaus:Novartis, BMS, MSD, Ariad, Pfizer: Consultancy Other, Honoraria, Research Funding. Müller:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 1681-1681
    Abstract: Abstract 1681 Introduction: The prognostic impact of different levels of molecular remission (BCR-ABL transcript expression according to International Scale, IS) at various time points on survival under imatinib treatment is still unclear. Whereas recently published data from the IRIS trial described relevant milestones at 6, 12, and 18 months for event-free and progression-free survival (PFS; Hughes et al., Blood 2010), little is known about an association of molecular response with overall survival (OS). The aim of this evaluation of the German CML Study IV was to elucidate the risk of disease progression and death as a function of the depth of molecular response in order to provide guidance in the interpretation of BCR-ABL levels in the clinical setting. Methods: 1,340 patients (median age 52 years, range 16–88, 60% male) were recruited into the randomized German CML Study IV and treated with an imatinib-based therapy as follows: imatinib 400 mg/d, n=381; imatinib 800 mg/d, n=399; imatinib 400 mg/d + interferon alpha, n=402; imatinib 400 mg/d + low-dose cytarabine, n=158. A total of 1,262 patients with typical b2a2 and b3a2 BCR-ABL transcripts were evaluable. Molecular responses were assessed in 811, 764, 671, and 619 patients at 6, 12, 18, and 24 months, respectively. Disease progression was defined as accelerated phase or blastic phase, or death from any reason. Landmark analyses and log-rank tests for OS and PFS were performed according to the achievement of different BCR-ABL response levels at different time points. Results: Patients were grouped according to the degree of molecular response ( 〈 0.1%, 0.1%-1%, 1%-10%, 〉 10% BCR-ABL IS) at each of the 4 time points and evaluated for 5-year OS and PFS. Estimated 5-year OS for the different molecular response categories was: 97% vs 96% vs 90% vs 88% (6 months, p=0.009); 96% vs 95% vs 89% vs 69% (12 months, p 〈 0.001); 98% vs 97% vs 92% vs 66% (18 months, p 〈 0.001); 97% vs 96% vs 96% vs 68% (24 months, p 〈 0.001). Applying the 4 response categories revealed estimated 5-year PFS of 97% vs 96% vs 91% vs 86% (p=0.004) at 6 months, 97% vs 92% vs 89% vs 72% (p 〈 0.001) at 12 months, 99% vs 95% vs 90% vs 77% (p 〈 0.001) at 18 months, and 97% vs 97% vs 93% vs 65% (p 〈 0.001) at 24 months (s. Table). Conclusions: Faster and deeper response to imatinib-based treatment revealed to be associated with improved overall and progression-free survival. Inferior OS and PFS can be deducted from the synopsis of BCR-ABL expression and treatment duration, e.g. 〉 1% BCR-ABL IS at 6 months or 12 months might be, and 〉 10% BCR-ABL IS should be a trigger for a treatment change. Thereby this analysis might provide decision guidance for alteration or continuation of primary imatinib treatment. Disclosures: Schnittger: Münchner Leukämie Labor: Equity Ownership. German CML Study Group:EU: Research Funding; BMBF: Research Funding; Novartis: Research Funding; Deutsche Krebshilfe: Research Funding; Roche: Research Funding; Essex: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 156-156
    Abstract: Introduction: Early prediction of outcome using response-related predictive landmarks has become a major paradigm in the clinical management of chronic myeloid leukemia (CML). Several studies have shown the predictive impact of 10% BCR-ABLIS at 3 and 6 months for different tyrosine kinase inhibitors. The question, which landmark should define treatment failure and determine treatment intervention has been discussed vividly. However, an objective analysis of quality criteria for different early prognostic landmarks is lacking up to now. Here we compare sensitivity, specificity and the proportion of later disease progressions predicted by 3-month and 6-month landmarks in imatinib-treated patients of the CML-study IV. Methods: A total of 1,303 newly diagnosed patients were assigned to an imatinib-based treatment arm of CML-Study IV by April 2010. Median follow-up was 7.1 years. The number of molecular assessments was as follows: n=789 (at 6 months), n=692 (at 3 months) and n=301 (at 3 months and at diagnosis, without pretreatment). Gene expression levels were determined by quantitative RT-PCR. At 3 and 6 months, a BCR-ABL ratio was calculated using ABL as reference gene and standardized according to the international scale (BCR-ABLIS). In addition, at 3 months and at diagnosis a BCR-ABL ratio was calculated using beta-glucuronidase (GUS) as reference gene in order to ensure linearity of measurement at diagnosis. The log reduction at 3 months was calculated from the BCR-ABL ratio at 3 months and at diagnosis. Due to the time-dependent nature of censored survival data, the sensitivity and specificity at eight years were calculated using the method by Heagerty et al. (Biometrics 2000). Overall survival (OS) is defined by the absence of death from any reason, progression-free survival (PFS) is defined as survival in the absence of progression to accelerated or blastic phase. Landmark analyses were performed to compare survival outcomes according to Kaplan-Meier. Results:Comparing the 10% BCR-ABLIS landmark at 3 and 6 months, 8-year OS and PFS rates are equal or comparable (table). In contrast, sensitivity and specificity differ substantially with an advantage in favor of sensitivity for the 3-month landmark and in favor of specificity for the 6-month landmark. This difference is paralleled by a smaller proportion of high-risk patients and less progressions identified by the 6-month landmark. From a clinical point of view the 6-month landmark is not only less than half as sensitive, moreover a treatment intervention at 6 months might also prevent less progressions due to the delay of 3 months. The half-log reduction landmark at 3 months is as sensitive as 10% BCR-ABLIS at the same time. However, it shows improved specificity and defines the smallest proportion of high-risk patients. Conclusion: The 10% BCR-ABLIS landmark, which is currently defining treatment failure at 6 months according to European LeukemiaNet (ELN) criteria, fails to detect the majority of patients with later disease progression. Less than a half-log reduction of individual baseline BCR-ABL transcript levels at 3 months on treatment identifies patients with later progressions as sensitive but with higher specificity as compared to 10% BCR-ABLIS. Abstract 156. Table Prognostic landmark 8-year OS (%) 8-year PFS (%) P-value for PFS Sensitivity to predict progression (%) Specificity to predict progression (%) High-risk patients Disease progressions classified as high-risk / total 3 months (n=692) 10% BCR-ABLIS 88 vs. 96 82 vs. 90 0.001 41.1 74.6 191 (28%) 32/74 (43%) 6 months (n=789) 10% BCR-ABLIS 88 vs. 96 84 vs. 95 0.001 18.2 93.8 95 (12%) 17/74 (23%) 1% BCR-ABLIS 90 vs. 97 89 vs. 97 〈 0.001 39.6 68.6 291 (37%) 46/74 (62%) 3 months (n=301) 0.5-log reduction 81 vs. 95 75 vs. 94 〈 0.001 42.6 86.9 48 (16%) 10/24 (42%) Disclosures Hanfstein: Novartis: Research Funding; Bristol-Myers Squibb: Honoraria. Hehlmann:Novartis: Research Funding; Bristol-Myers Squibb: Research Funding. Saussele:Novartis: Honoraria, Research Funding, Travel Other; Bristol-Myers Squibb: Honoraria, Research Funding, Travel, Travel Other; Pfizer: Honoraria, Travel, Travel Other. Schnittger:MLL Munich Leukemia Laboratory: Equity Ownership. Neubauer:MedUpdate: Honoraria, Speakers Bureau. Kneba:Novartis: Consultancy, Equity Ownership, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Pfirrmann:Novartis: Consultancy; Bristol-Myers Squibb: Honoraria. Hochhaus:Novartis: Consultancy, Honoraria, Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria; ARIAD: Honoraria, Research Funding; Pfizer: Consultancy, Research Funding. Müller:Novartis: Honoraria, Research Funding; Bristol Myers Squibb: Honoraria, Research Funding; ARIAD: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Cancer Research and Clinical Oncology, Springer Science and Business Media LLC, Vol. 140, No. 11 ( 2014-11), p. 1965-1969
    Type of Medium: Online Resource
    ISSN: 0171-5216 , 1432-1335
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2014
    detail.hit.zdb_id: 1459285-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 3773-3773
    Abstract: Abstract 3773 Introduction: The vast majority of chronic myeloid leukemia (CML) patients express a BCR-ABL fusion gene mRNA encoding a 210 kDa tyrosine kinase which is constitutively activated and hence the mainspring of leukemic transformation. Two typical mRNA variants exist that differ in the presence or absence of the 75 basepair BCR exon 14: the e13a2 (lacking exon 14, also known as “b2a2”) and the e14a2 BCR-ABL transcript (“b3a2”). The significance of the additional 25 amino acid residues of the e14a2 BCR-ABL oncoprotein was extensively studied in the pre-imatinib era. However, the influence of the BCR-ABL transcript variant on the individual disease phenotype and outcome remained controversial and is still undefined in the imatinib era. Patients and methods: A total of 1,104 patients (median age 52 years, range 16–85, 40% female) expressing typical BCR-ABL transcript types (e13a2, n=447; e14a2, n=491; e13a2 and e14a2, n=166) were included in the randomized German CML study IV and treated with an imatinib based therapy consisting of imatinib 400 mg, imatinib 800 mg and combinations of standard dose imatinib with interferon alpha and low-dose cytarabine. The type of BCR-ABL transcript was defined by multiplex PCR. BCR-ABL expression was determined by quantitative RT-PCR and standardized according to the international scale (IS). Cytogenetic response was determined by conventional metaphase analyses. Response landmarks were defined according to European LeukemiaNet criteria, MR4 was defined as BCR-ABL IS ≤ 0.01% Results: No differences regarding age, sex and Euro risk were observed. A significant difference was observed comparing white blood cells (90,400/μl vs. 69,100/μl, p 〈 0.001) and platelets (293,000/μl vs. 424,000/μl, p 〈 0.001) at diagnosis (median, e13a2 vs. e14a2, respectively) indicating a distinct phenotype. No significant difference was observed regarding spleen size, basophils, eosinophils, blasts or adverse events under imatinib. Molecular response as determined by a transcript independent quantitative PCR assay was superior in e14a2 patients as compared to e13a2 patients (median time to major molecular response, MMR 1.5 years vs. 1.2 years, p 〈 0.001; median time to MR4 4.2 years vs. 2.5 years, p 〈 0.001). No difference was observed with regard to the achievement of a complete cytogenetic remission (CCyR). The superior molecular response rate of e14a2 patients did not translate into differences in progression free survival (PFS) or overall survival (OS). Conclusion: Distinct initial blood counts suggest a different phenotype of e13a2 and e14a2 driven CML. MMR and MR4 are achieved earlier by e14a2 patients whereas no difference was observed with regard to PFS and OS. Disclosures: Schnittger: Münchner Leukämie Labor: Equity Ownership. Haferlach:Münchner Leukämie Labor: Equity Ownership. German CML Study Group:Deutsche Krebshilfe: Research Funding; Novartis: Research Funding; BMBF: Research Funding; EU: Research Funding; Roche: Research Funding; Essex: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 3762-3762
    Abstract: Abstract 3762 Introduction: The EUTOS Score was developed and validated as a prognostic tool for the achievement of complete cytogenetic response (CCR) at 18 months for chronic phase (CP) CML patients under imatinib therapy. The score identifies high-risk patients not reaching CCR at 18 months with a positive predictive value of 34% and a specificity of 92% using only two variables, peripheral blood basophils and spleen size at diagnosis (Hasford et al. Blood 2011). We sought to evaluate the clinical impact of the EUTOS score to predict molecular response. Therefore, we analyzed the EUTOS score with patients from the German CML-Study IV, a randomized 5-arm trial (imatinib 400 mg vs. imatinib 800 mg vs. imatinib in combination with interferon alpha vs. imatinib in combination with araC vs. imatinib after interferon failure). Results: From July 2002 to December 2010, 1,502 patients with BCR-ABL positive CML in CP were randomized. 129 patients with imatinib after interferon alpha and 36 other patients had to be excluded (14 due to incorrect randomization or withdrawal of consent, 22 with missing baseline information). 1,337 patients were evaluable for overall and progression-free survival (OS and PFS), 1,252 for molecular responses. 749 of these patients were part of the score development sample. Therefore cytogenetic analyses are not described here. By EURO score, 36% of patients (n=475) were low risk, 51% (n=681) intermediate risk, and 12% (n=167) high risk. The EUTOS score was low risk in 88% (n=1163) and high risk in 12% (n=160). The high-risk patients differed between the two scores: EUTOS high-risk patients were classified according to EURO score in 12% as low (n=19), in 45% as intermediate (n=68) and in 43% as high risk (n=73). Patients with high, intermediate, and low risk EURO score achieved MMR in 22, 16, and 13 months and CMR4 (BCR-ABL 〈 =0.01%) in 59, 41, and 34 months. P-values for low vs. intermediate risk groups were borderline only (0.03 for MMR and 0.04 for CMR4), whereas p-values for high vs. low/intermediate risk groups were for both molecular response levels 〈 0.001. At 12 months the proportion of patients in MMR was 38%, 46%, 54% for high, intermediate, and low risk patients, respectively. Similar results were observed with the Sokal score. Patients with high risk EUTOS score achieved deep molecular responses (MMR and CMR4) significantly later than patients with low risk EUTOS score (MMR: median 21.0 vs. 14.8 months, p 〈 0.001, Fig. 1a; CMR4: median 60.6 vs. 37.2 months, p 〈 0.001, Fig. 1b). The proportions of patients achieving MMR at 12 months were significantly lower in the EUTOS high-risk group than in the EUTOS low-risk group (30.8% vs. 50.6%, p 〈 0.001). OS after 5 years was 85% for high and 91% for low risk patients (p=n.s.), PFS was 85% and 90%, respectively. Conclusions: The EUTOS score clearly separates CML patients also according to MMR and CMR4 (MR4). The new EUTOS score should be used in future trials with tyrosine kinase inhibitors in CML. Disclosures: Neubauer: Novartis: Honoraria, Research Funding; Roche: Research Funding. Kneba:Hoffmann La Roche: Honoraria. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Hochhaus:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees; Ariad: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. German CML Study Group:Deutsche Krebshilfe: Research Funding; Novartis: Research Funding; BMBF: Research Funding; EU: Research Funding; Roche: Research Funding; Essex: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages