Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2007
    In:  Circulation Vol. 116, No. suppl_16 ( 2007-10-16)
    In: Circulation, Ovid Technologies (Wolters Kluwer Health), Vol. 116, No. suppl_16 ( 2007-10-16)
    Abstract: Sustained cardiac hypertrophy may lead to heart failure and sudden death. While significant progress has been made in elucidating the underlying molecular mechanisms, it is believed that several molecules that modulate cardiomyocyte growth remain elusive. To identify novel candidates involved in hypertrophic signalling, we conducted a genome-wide screening experiment by subjecting neonatal rat cardiomyocytes (NRCM) to either biomechanical stretch or phenylephrine (PE) stimulation followed by microarray analyses. Among several other molecules (stretch: n=164; PE: n=238), the new LIM protein Dyxin/Lmcd1 was significantly upregulated both by stretch (5.6fold, p 〈 0.001) and PE (2.5 fold, p 〈 0.01). Moreover, Dyxin was markedly induced in hypertrophic hearts of transgenic mice overexpressing the phosphatase calcineurin (3.8fold on mRNA- and 2.9fold on protein level (both p 〈 0.01)). To dissect the putative function of this novel molecule, we adenovirally overexpressed Dyxin in NRCM, which led to marked cellular hypertrophy (1.5fold increase in cell surface area, p 〈 0.001) and induction of ANF (3.8fold, p 〈 0.05). In addition, the calcineurin-responsive gene MCIP1.4 was found upregulated (3.2fold, p 〈 0.001), suggesting that Dyxin activates the calcineurin pathway. In order to test whether Dyxin is also required for cardiomyocyte hypertrophy, we stimulated NRCVM with either PE or stretch and utilized adenovirus-encoded microRNAs to knock down Dyxin (−75% on protein, −85% on mRNA level). While both PE and stretch induced significant hypertrophy (+41% and +48%, p 〈 0.001), the inhibition of Dyxin expression completely blunted the hypertrophic response to both stimuli (p 〈 0.001). Consistently, induction of the “hypertrophic gene program” (including ANF, BNP, and alpha-skeletal actin) was abrogated. Likewise, PE-mediated upregulation of MCIP1.4 expression (7.3fold; p 〈 0.001), was entirely prevented by the knockdown of Dyxin (0.8fold, p=n.s.). We show here that Dyxin, which has not been implicated in hypertrophy before, is significantly upregulated in cardiac hypertrophy. Moreover, it is both necessary and sufficient for cardiomyocyte hypertrophy, and this effect is mediated, at least in part by modulation of calcineurin signalling.
    Type of Medium: Online Resource
    ISSN: 0009-7322 , 1524-4539
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2007
    detail.hit.zdb_id: 1466401-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular and Cellular Biology, Informa UK Limited, Vol. 22, No. 15 ( 2002-08-01), p. 5492-5505
    Type of Medium: Online Resource
    ISSN: 1098-5549
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2002
    detail.hit.zdb_id: 1474919-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: FEMS Microbiology Ecology, Oxford University Press (OUP), Vol. 98, No. 7 ( 2022-07-13)
    Abstract: Glacial melt-down alters hydrological and physico-chemical conditions in downstream aquatic habitats. In this study, we tested if sediment-associated microbial communities respond to the decrease of glaciers and associated meltwater flows in high-alpine lakes. We analyzed 16 lakes in forefield catchments of three glaciers in the Eastern Swiss Alps on physico-chemical and biological parameters. We compared lakes fed by glacier meltwater with hydrologically disconnected lakes, as well as “mixed” lakes that received water from both other lake types. Glacier-fed lakes had a higher turbidity (94 NTU) and conductivity (47 µS/cm), but were up to 5.2°C colder than disconnected lakes (1.5 NTU, 26 µS/cm). Nutrient concentration was low in all lakes (TN & lt; 0.05 mg/l, TP & lt; 0.02 mg/l). Bacterial diversity in the sediments decreased significantly with altitude. Bacterial community composition correlated with turbidity, temperature, conductivity, nitrate, and lake age and was distinctly different between glacier-fed compared to disconnected and mixed water lakes, but not between catchments. Chemoheterotrophic processes were more abundant in glacier-fed compared to disconnected and mixed water lakes where photoautotrophic processes dominated. Our study suggests that the loss of glaciers will change sediment bacterial community composition and physiology that are unique for glacier-fed lakes in mountain and polar regions.
    Type of Medium: Online Resource
    ISSN: 1574-6941
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1501712-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2007
    In:  Circulation Vol. 116, No. 22 ( 2007-11-27), p. 2587-2596
    In: Circulation, Ovid Technologies (Wolters Kluwer Health), Vol. 116, No. 22 ( 2007-11-27), p. 2587-2596
    Abstract: Background— We have previously shown that deficiency for the z-disc protein calsarcin-1 (CS1) sensitizes the heart to calcineurin signaling and to stimuli of pathological hypertrophy. In the present study we asked whether overexpression of CS1 might exhibit antihypertrophic effects, and therefore we tested this hypothesis both in vitro and in vivo. Methods and Results— Adenoviral gene transfer of CS1 into neonatal cardiomyocytes inhibited hypertrophy as a result of Gq-agonist stimulation, including angiotensin-II (Ang-II), endothelin-1, and phenylephrine. Consistently, Adenoviral gene transfer of CS1 also led to the reduction of increased levels of atrial natriuretic factor (mRNA) and the calcineurin-sensitive gene MCIP1.4, suggesting that CS1 inhibits calcineurin-dependent signaling. Furthermore, we generated CS1-overexpressing transgenic mice (CS1Tg). Unchallenged CS1Tg mice did not exhibit a pathological phenotype as assessed by echocardiography and analysis of cardiac gene expression. Likewise, when subjected to long-term infusion of Ang-II, both CS1Tg and wild-type mice developed a similar degree of arterial hypertension. Yet, in contrast to wild-type mice, Ang-II–treated CS1Tg animals did not display cardiac hypertrophy. Despite the absence of hypertrophy, both fractional shortening and dP/dt max were preserved in CS1Tg Ang-II–treated mice as assessed by echocardiography and cardiac catherization, respectively. Moreover, induction of the hypertrophic gene program (atrial natriuretic factor, brain natriuretic peptide) was markedly blunted, and expression of the calcineurin-dependent gene MCIP1.4 was significantly reduced in CS1Tg mice, again consistent with an inhibitory role of CS1 on calcineurin. Conclusions— The sarcomeric protein CS1 prevents Ang-II–induced cardiomyocyte hypertrophy at least in part via inhibition of calcineurin signaling. Thus, overexpression of CS1 might represent a novel approach to attenuate pathological cardiac hypertrophy.
    Type of Medium: Online Resource
    ISSN: 0009-7322 , 1524-4539
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2007
    detail.hit.zdb_id: 1466401-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Molecular and Cellular Cardiology, Elsevier BV, Vol. 49, No. 4 ( 2010-10), p. 673-682
    Type of Medium: Online Resource
    ISSN: 0022-2828
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2010
    detail.hit.zdb_id: 1469767-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2008
    In:  Hypertension Vol. 51, No. 2 ( 2008-02), p. 309-318
    In: Hypertension, Ovid Technologies (Wolters Kluwer Health), Vol. 51, No. 2 ( 2008-02), p. 309-318
    Abstract: Biomechanical stress ie, attributable to pressure overload, leads to cardiac hypertrophy and may ultimately cause heart failure. Yet, it is still unclear how mechanical stress is sensed and transduced on the molecular level. To systematically elucidate the underlying signal transduction pathways, we analyzed the gene expression profile of stretched cardiomyocytes on a genome-wide scale in comparison with other inducers of hypertrophy such as pharmacological stimulation. Neonatal rat ventricular cardiomyocytes were either stretched biaxially or stimulated with phenylephrine (PE), both resulting in a similar degree of hypertrophy. Microarray analyses revealed 164 genes 〉 2.0-fold up- and 21 genes 〈 0.5-fold downregulated ( P 〈 0.01). Differential expression was confirmed by real-time polymerase chain reaction. Genes of the “fetal gene program” such as BNP were induced by both stretch (4.2×) and PE (2.9×). We also verified upregulation of known stretch-responsive genes, including HSP70 (20.9×) and c-myc (3.0×). Moreover, several genes were found to be preferentially induced by stretch, such as the cardioprotective cytokine GDF15 (24.8×) and heme oxygenase 1 (Hmox1, 10.8×; both confirmed on protein level). Neither PE nor endothelin-1 upregulated GDF15 and Hmox1, whereas angiotensin II significantly induced both genes. Conversely, the AT 1 receptor blocker irbesartan markedly blunted stretch-mediated GDF15 and Hmox1 upregulation, suggesting that the angiotensin receptor tranduces the biomechanical induction of these genes. In conclusion, we report a comprehensive gene expression profile of cardiomyocytes subjected to biomechanical stress in comparison with pharmacologically induced hypertrophy. Our data imply that a stretch-specific gene program exists, which is mediated, at least in part, by angiotensin II–dependent signaling.
    Type of Medium: Online Resource
    ISSN: 0194-911X , 1524-4563
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2008
    detail.hit.zdb_id: 2094210-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2008
    In:  Circulation Vol. 118, No. suppl_18 ( 2008-10-28)
    In: Circulation, Ovid Technologies (Wolters Kluwer Health), Vol. 118, No. suppl_18 ( 2008-10-28)
    Abstract: In order to identify new molecular mediators of cardiomyocyte hypertrophy, we performed a genome wide mRNA microarray screen of biomechanically stretched neonatal rat cardiomyocytes (NRCM). We found the novel sarcomeric LIM protein Dyxin/Lmcd1 being significantly upregulated (5.6x, p 〈 0.001). Moreover, Dyxin was also significantly induced in several mouse models of myocardial hypertrophy including aortic banding, calcineurin overexpression and angiotensin stimulation, suggesting a potential role as a mediator of cardiac hypertrophy. To further test this hypothesis, we adenovirally overexpressed Dyxin in NRCM which potently induced cellular hypertrophy (150%, p 〈 0.001) and the hypertrophic gene program (ANF, BNP). Consistent with an induction of calcineurin signalling, the calcineurin-responsive gene Rcan1– 4 (MCIP1.4) was found significantly upregulated (3.2x, p 〈 0.001). Conversely, knockdown of Dyxin (−75% on protein level) via miRNA completely blunted the hypertrophic response to hypertrophic stimuli, including stretch and PE (both p 〈 0.001). Furthermore, PE-mediated activation of calcineurin signaling (Upregulation of Rcan1– 4 by 7.3x, p 〈 0.001) was completely blocked by knockdown of Dyxin. To confirm these results in vivo, we next generated transgenic mice with cardiac-restricted overexpression of Dyxin using the α -MHC promoter. Despite normal cardiac function as assessed by echocardiography, adult transgenic mice displayed significant cardiac hypertrophy in morphometrical analyses (3.9 vs. 3.5 mg/g LV/heart weight, n=8–11, p 〈 0.05). This finding was supplemented by a robust induction of the hypertrophic gene program including ANF (3.7-fold, n=6, p=0.01) and α -skeletal actin (2.8-fold, n=6, p 〈 0.05). Likewise, Rcan1– 4 was found upregulated (+112%, n=5, p 〈 0.05), Taken together, we show that the novel sarcomeric z-disc protein Dyxin/Lmcd1 is significantly upregulated in several models of cardiac hypertrophy and potently induces cardiomyocyte hypertrophy both in vitro and in vivo. Mechanistically, Lmcd1/Dyxin appears to signal through the calcineurin pathway.
    Type of Medium: Online Resource
    ISSN: 0009-7322 , 1524-4539
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2008
    detail.hit.zdb_id: 1466401-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages