Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
  • 1
    In: Blood, American Society of Hematology, Vol. 110, No. 11 ( 2007-11-16), p. 360-360
    Abstract: Follicular lymphoma (FL) is a B-cell non-Hodgkin lymphoma that is characterized in approximately 85% of cases by the chromosomal translocation t(14;18) involving BCL2. While FL3b generally lack the t(14;18), this translocation is also absent in 15% of FL grades 1, 2 and 3a. The current study was designed to identify the frequency of t(14;18)-negative FL in a series of 166 cases of FL1, 2 and 3a in which global gene expression profiles had been established previously (Dave et al., NEJM351:2159–69, 2004). Furthermore, we sought to compare genetic alterations and gene expression profiles between FL with and without the t(14;18). Combined polymerase chain reaction (PCR) and tissue microarray-based fluorescence in situ hybridization (FISH) identified 17 t(14;18)-negative FL cases in this series (9%). Virtually all FL cases carrying the t(14;18) showed BCL2 expression by immunohistochemistry (Dako, clone 124), whereas 11 of the FL cases without a t(14;18) were BCL2-negative at the protein level. Clinically, there was no difference between the t(14;18)-negative and -positive FL subgroups regarding age and gender distribution as well as in median survival times. Comparative genomic hybridization (CGH) in the 166 FL cases revealed a characteristic pattern of chromosomal gains and losses, as previously described. However, significant differences were observed between the t(14;18)-negative and -positive FL subgroups. Specifically, the t(14;18)-positive FL subgroup showed gains of chromosomes 18q (18%), 8q (12%) and X (13%), as well as losses of 13q (16%) and 10q (16%), whereas none of these aberrations were observed in the t(14;18)-negative FL cases. To compare gene expression between the two groups, we used gene set enrichment analysis (GSEA), BRB array tools and a two-sided t-test. Cell cycle-associated genes were found to be enriched in the t(14;18)-negative FL subset. These differences were even more pronounced in FL cases that lacked both the t(14;18) and BCL2 expression at the protein level. Importantly, genes expressed in non-malignant bystander cells appeared also differentially enriched and a cytotoxic gene expression signature was found to be more prominent in t(14;18)-negative FL. These findings point to a different composition of the non-neoplastic cells in t(14;18)-positive and -negative FL and could indicate subtle differences in the immunological microenvironment of t(14;18)-negative FL.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2007
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 116, No. 6 ( 2010-08-12), p. 953-961
    Abstract: The genome of mantle cell lymphoma (MCL) is, in addition to the translocation t(11;14), characterized by a high number of secondary chromosomal gains and losses that probably account for the various survival times of MCL patients. We investigated 77 primary MCL tumors with available clinical information using high-resolution RNA expression and genomic profiling and applied our recently developed gene expression and dosage integrator algorithm to identify novel genes and pathways that may be of relevance for the pathobiology of MCL. We show that copy number neutral loss of heterozygosity is common in MCL and targets regions that are frequently affected by deletions. The molecular consequences of genomic copy number changes appear complex, even in genomic loci with identified tumor suppressors, such as the region 9p21 containing the CDKN2A locus. Moreover, the deregulation of novel genes, such as CUL4A, ING1, and MCPH1, may affect the 2 crucial pathogenetic mechanisms in MCL, the disturbance of the proliferation, and DNA damage response pathways. Deregulation of the Hippo pathway may have a pathogenetic role in MCL because decreased expression of its members MOBKL2A, MOBKL2B, and LATS2 was associated with inferior outcome, including an independent validation series of 32 MCLs.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 114, No. 4 ( 2009-07-23), p. 826-834
    Abstract: Follicular lymphoma (FL) is genetically characterized by the presence of the t(14;18)(q32;q21) chromosomal translocation in approximately 90% of cases. In contrast to FL carrying the t(14;18), their t(14;18)-negative counterparts are less well studied about their immunohistochemical, genetic, molecular, and clinical features. Within a previously published series of 184 FLs grades 1 to 3A with available gene expression data, we identified 17 FLs lacking the t(14;18). Comparative genomic hybridization and high-resolution single nucleotide polymorphism (SNP) array profiling showed that gains/amplifications of the BCL2 gene locus in 18q were restricted to the t(14;18)-positive FL subgroup. A comparison of gene expression profiles showed an enrichment of germinal center B cell–associated signatures in t(14;18)-positive FL, whereas activated B cell–like, NFκB, proliferation, and bystander cell signatures were enriched in t(14;18)-negative FL. These findings were confirmed by immunohistochemistry in an independent validation series of 84 FLs, in which 32% of t(14;18)-negative FLs showed weak or absent CD10 expression and 91% an increased Ki67 proliferation rate. Although overall survival did not differ between FL with and without t(14;18), our findings suggest distinct molecular features of t(14;18)-negative FL.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 2686-2686
    Abstract: The development of B-cells is a complex process that proceeds through multiple stages and is regulated by a hierarchy of transcription factors and other physiologic signals. Each unique B-cell malignancy can be aligned with a 'normal counterpart' at one or more of these discrete developmental stages. However, with the exception of translocations of transcription factor genes, the genetic basis for this is not well defined. We performed an analysis of high-resolution single nucleotide polymorphism (SNP) microarrays from 694 diffuse large B-cell (DLBCL) tumors to identify significant somatic copy number alterations (SCNA). Through integrative analysis of 249 tumors with matched gene expression profiling (GEP) data, we identified the likely targets of these alterations and found that genes that were targeted by DNA copy number gain were significantly enriched for DNA binding activity and transcription factor function. We extended upon this observation by analyzing SNP microarray data of a further 2,716 tumors from 7 additional subtypes of B-cell malignancy. Through this analysis, we identified patterns of transcription factor alterations that aligned with the differentiation state of the 'normal B-cell counterpart' of each malignancy. This provides evidence that SCNA of B-cell transcription factors may underlie the differentiation state of B-cell malignancies. DLBCL can be divided into two subtypes based upon gene expression profiles that align with either the germinal center B-cell differentiation state (GCB-like) or a post-GCB activated B-cell state (ABC-like). Having observed an enrichment for transcription factor SCNAs in DLBCL, and an alignment between transcription factor alterations and differentiation states in other B-cell malignancies, we hypothesized that SCNAs of transcription factors may also underlie the etiology of these molecular subtypes. By testing for associations between SCNAs and cell of origin subtype, we identified three co-segregating DNA copy number gains that were significantly enriched in the ABC-like subtype. These included gains of the BCL6 and SPIB genes that have been previously observed to be associated with the ABC-like subtype. In addition, we found gains of the TCF4 (E2-2) gene to be significantly enriched in ABC-like tumors. In line with this, TCF4 alterations were significantly associated with reduced overall survival in cohorts of patients treated with either CHOP (n=232, P=0.009) or R-CHOP (n=197, P=0.041). B-cell receptor (BCR) signaling is a key survival pathway in ABC-like DLBCL, and the TCF4 gene has a defined role in promoting the expression of immunoglobulin (Ig) genes that encode the B-cell receptor (BCR). The analysis of paired SCNA and GEP data revealed a significantly higher expression of Ig genes in tumors with TCF4 DNA copy number gain compared to those without, suggesting that normal BCR expression may be deregulated by this genetic alteration. In addition, chromatin-immunoprecipitation sequencing (ChIP-seq) for TCF4 in ABC-like DLBCL cell lines also revealed binding of TCF4 to an Ig gene enhancer region. As BCR signaling can be altered by somatic mutations in the CARD11, CD79B and MYD88 genes, we evaluated the relative representation of these mutations and TCF4 DNA copy number gains using targeted deep sequencing of 124 DLBCL tumors. This revealed that TCF4 DNA copy number gains largely mutually excluded CARD11 mutations, but significantly co-segregated with both MYD88 (FDR=0.005) and CD79B (FDR=0.053) mutations. In addition, we observed significant co-segregation between CD79B and MYD88 mutations (FDR 〈 0.001). This is particularly notable due to the preliminary associations between combined CD79B and MYD88 mutation status and response to an inhibitor of BCR signaling, Ibrutinib. Together these data highlight an association between SCNA of B-cell transcription factors and the differentiation state of the 'normal counterpart' of the respective malignant B-cell. In line with this, we show that DNA copy number gains of the TCF4 transcription factor are associated with the ABC-like subtype of DLBCL, significantly worse overall survival, and increased Ig expression. These characteristics, in addition to the co-association between TCF4 DNA copy number gains and somatic mutations of CD79B and MYD88, suggest that TCF4 may be an important modifier of BCR signaling and contribute to the etiology of ABC-like DLBCL. Disclosures Rosenquist: Gilead Sciences: Speakers Bureau. Lunning:TG Therapeutics: Consultancy; AbbVie: Consultancy; Gilead: Consultancy; Bristol-Myer-Squibb: Consultancy; Juno: Consultancy; Genentech: Consultancy; Spectrum: Consultancy; Celgene: Consultancy; Pharmacyclics: Consultancy. Rodig:Bristol-Myers Squibb: Honoraria, Research Funding; Perkin Elmer: Membership on an entity's Board of Directors or advisory committees. Levy:Kite Pharma: Consultancy; Five Prime Therapeutics: Consultancy; Innate Pharma: Consultancy; Beigene: Consultancy; Corvus: Consultancy; Dynavax: Research Funding; Pharmacyclics: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2013
    In:  Proceedings of the National Academy of Sciences Vol. 110, No. 45 ( 2013-11-05), p. 18250-18255
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 45 ( 2013-11-05), p. 18250-18255
    Abstract: Mantle cell lymphoma (MCL) is an aggressive tumor, but a subset of patients may follow an indolent clinical course. To understand the mechanisms underlying this biological heterogeneity, we performed whole-genome and/or whole-exome sequencing on 29 MCL cases and their respective matched normal DNA, as well as 6 MCL cell lines. Recurrently mutated genes were investigated by targeted sequencing in an independent cohort of 172 MCL patients. We identified 25 significantly mutated genes, including known drivers such as ataxia-telangectasia mutated ( ATM ), cyclin D1 ( CCND1 ), and the tumor suppressor TP53 ; mutated genes encoding the anti-apoptotic protein BIRC3 and Toll-like receptor 2 ( TLR2 ); and the chromatin modifiers WHSC1 , MLL2 , and MEF2B . We also found NOTCH2 mutations as an alternative phenomenon to NOTCH1 mutations in aggressive tumors with a dismal prognosis. Analysis of two simultaneous or subsequent MCL samples by whole-genome/whole-exome ( n = 8) or targeted ( n = 19) sequencing revealed subclonal heterogeneity at diagnosis in samples from different topographic sites and modulation of the initial mutational profile at the progression of the disease. Some mutations were predominantly clonal or subclonal, indicating an early or late event in tumor evolution, respectively. Our study identifies molecular mechanisms contributing to MCL pathogenesis and offers potential targets for therapeutic intervention.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2013
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Modern Pathology, Elsevier BV, Vol. 25, No. 9 ( 2012-09), p. 1227-1235
    Type of Medium: Online Resource
    ISSN: 0893-3952
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2012
    detail.hit.zdb_id: 2041318-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Informa UK Limited ; 2010
    In:  Leukemia & Lymphoma Vol. 51, No. 7 ( 2010-07), p. 1157-1158
    In: Leukemia & Lymphoma, Informa UK Limited, Vol. 51, No. 7 ( 2010-07), p. 1157-1158
    Type of Medium: Online Resource
    ISSN: 1042-8194 , 1029-2403
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2010
    detail.hit.zdb_id: 2030637-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: BMC Cancer, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2010-12)
    Type of Medium: Online Resource
    ISSN: 1471-2407
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2010
    detail.hit.zdb_id: 2041352-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 2031-2031
    Abstract: Richter's syndrome (RS) is an aggressive transformation of Chronic Lymphocytic Leukemia (CLL) to Diffuse Large B Cell Lymphoma (DLBCL) refractory to current therapies with dismal prognosis. Richter Syndrome arises from CLL cells independent of common DLBCL mutations. Frequently, mutations in p53, CDKN2 or cMyc genes are involved, but a significant proportion displays no specifically acquired driver mutation. We could observe activation of AKT in 6 out 48 Richter syndrome biopsies by positive staining for active phosphorylated AKT while in CLL lymph nodes, DLBCL and Burkitt´s Lymphoma no phospho-AKT by IHC could be observed. However in primary patient CLL cases we could detect varying levels of pAKT by Western blot, elevated levels were identified predominantly in patients harboring high-risk mutations such p53, ATM, NOTCH1 and XPO1. Furthermore, B-cell receptor mediated stimulation of the PI3K/AKT axis provided protection towards genotoxic stress induced apoptosis via post-translation stabilization of MCL1. This provides subsequently a synergistic induction of apoptosis by combining idelalisib and bendamustin. Thus we analyzed the functional impact of AKT signaling using a conditional constitutive allele for AKT (AKT-C) specifically activated using CD19-Cre and Cγ1-Cre fro post-GC-activation. AKT activation alone could not induce a malignant phenotype, however we could demonstrate that Eµ-Tcl-1 mice with AKT-C develop Richter Syndrome. Both in EµTCL1:CD19-CreAKT-C (TCA) and EµTCL1:Cγ1- CreAKT-C (TCγ1A) mice developed a high-grade lymphoma phenotype leading to decreased survival. Transformed cells displayed blastoid characteristics with significantly increased cellular size and the histomorphological features of DLBCL. Large transformed cells show high percentage of KI67-positive staining ( 〉 90%) and frequent mitotic figures. Here, AKT-mediated GSK-3b inhibition and subsequent cMyc and Mcl-1 stabilization might transform CLL to RS cells and combinatory treatments with DNA-damaging and PI3K-inhibiting compounds revealed promising therapeutic results. Collectively, we have identified AKT signaling as an oncogenic signaling pathway in progression of CLL towards Richter´s syndrome and generated the first murine Richter Syndrome model (TCA and TCγ1A) providing novel mechanistic insights into the molecular understanding of Richter's transformation that is amenable to model therapeutic strategies and to address the efficacy of synergistic treatment combinations. Disclosures Klapper: Roche, Novartis, Amgen, Takeda: Research Funding. Hallek:Amgen: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; Mundipharma: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; AbbVie: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; F. Hoffmann-LaRoche: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; Janssen-Cilag: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; Gilead: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Elsevier BV ; 2008
    In:  Hematology/Oncology Clinics of North America Vol. 22, No. 5 ( 2008-10), p. 807-823
    In: Hematology/Oncology Clinics of North America, Elsevier BV, Vol. 22, No. 5 ( 2008-10), p. 807-823
    Type of Medium: Online Resource
    ISSN: 0889-8588
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2008
    detail.hit.zdb_id: 93115-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages