Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Wiley ; 2002
    In:  Developmental Dynamics Vol. 223, No. 4 ( 2002-04), p. 517-525
    In: Developmental Dynamics, Wiley, Vol. 223, No. 4 ( 2002-04), p. 517-525
    Type of Medium: Online Resource
    ISSN: 1058-8388 , 1097-0177
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2002
    detail.hit.zdb_id: 1473797-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Wiley ; 1984
    In:  Journal of Cellular Physiology Vol. 121, No. S3 ( 1984), p. 179-191
    In: Journal of Cellular Physiology, Wiley, Vol. 121, No. S3 ( 1984), p. 179-191
    Type of Medium: Online Resource
    ISSN: 0021-9541 , 1097-4652
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 1984
    detail.hit.zdb_id: 1478143-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Molecular Sciences Vol. 23, No. 22 ( 2022-11-18), p. 14359-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 22 ( 2022-11-18), p. 14359-
    Abstract: Acute lymphoblastic leukemias arising from the malignant transformation of B-cell precursors (BCP-ALLs) are protected against chemotherapy by both intrinsic factors as well as by interactions with bone marrow stromal cells. Galectin-1 and Galectin-3 are lectins with overlapping specificity for binding polyLacNAc glycans. Both are expressed by bone marrow stromal cells and by hematopoietic cells but show different patterns of expression, with Galectin-3 dynamically regulated by extrinsic factors such as chemotherapy. In a comparison of Galectin-1 x Galectin-3 double null mutant to wild-type murine BCP-ALL cells, we found reduced migration, inhibition of proliferation, and increased sensitivity to drug treatment in the double knockout cells. Plant-derived carbohydrates GM-CT-01 and GR-MD-02 were used to inhibit extracellular Galectin-1/-3 binding to BCP-ALL cells in co-culture with stromal cells. Treatment with these compounds attenuated migration of the BCP-ALL cells to stromal cells and sensitized human BCP-ALL cells to vincristine and the targeted tyrosine kinase inhibitor nilotinib. Because N-glycan sialylation catalyzed by the enzyme ST6Gal1 can regulate Galectin cell-surface binding, we also compared the ability of BCP-ALL wild-type and ST6Gal1 knockdown cells to resist vincristine treatment when they were co-cultured with Galectin-1 or Galectin-3 knockout stromal cells. Consistent with previous results, stromal Galectin-3 was important for maintaining BCP-ALL fitness during chemotherapy exposure. In contrast, stromal Galectin-1 did not significantly contribute to drug resistance, and there was no clear effect of ST6Gal1-catalysed N-glycan sialylation. Taken together, our results indicate a complicated joint contribution of Galectin-1 and Galectin-3 to BCP-ALL survival, with different roles for endogenous and stromal produced Galectins. These data indicate it will be important to efficiently block both extracellular and intracellular Galectin-1 and Galectin-3 with the goal of reducing BCP-ALL persistence in the protective bone marrow niche during chemotherapy.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Elsevier BV ; 1987
    In:  European Journal of Cancer and Clinical Oncology Vol. 23, No. 11 ( 1987-11), p. 1756-
    In: European Journal of Cancer and Clinical Oncology, Elsevier BV, Vol. 23, No. 11 ( 1987-11), p. 1756-
    Type of Medium: Online Resource
    ISSN: 0277-5379
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1987
    detail.hit.zdb_id: 2220742-9
    detail.hit.zdb_id: 283367-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 136, No. 2 ( 2020-07-9), p. 210-223
    Abstract: Resistance to multimodal chemotherapy continues to limit the prognosis of acute lymphoblastic leukemia (ALL). This occurs in part through a process called adhesion-mediated drug resistance, which depends on ALL cell adhesion to the stroma through adhesion molecules, including integrins. Integrin α6 has been implicated in minimal residual disease in ALL and in the migration of ALL cells to the central nervous system. However, it has not been evaluated in the context of chemotherapeutic resistance. Here, we show that the anti-human α6-blocking Ab P5G10 induces apoptosis in primary ALL cells in vitro and sensitizes primary ALL cells to chemotherapy or tyrosine kinase inhibition in vitro and in vivo. We further analyzed the underlying mechanism of α6-associated apoptosis using a conditional knockout model of α6 in murine BCR-ABL1+ B-cell ALL cells and showed that α6-deficient ALL cells underwent apoptosis. In vivo deletion of α6 in combination with tyrosine kinase inhibitor (TKI) treatment was more effective in eradicating ALL than treatment with a TKI (nilotinib) alone. Proteomic analysis revealed that α6 deletion in murine ALL was associated with changes in Src signaling, including the upregulation of phosphorylated Lyn (pTyr507) and Fyn (pTyr530). Thus, our data support α6 as a novel therapeutic target for ALL.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 570-570
    Abstract: Background: IGLL1 and VPREB1 encode for the l5 and VpreB components, respectively, of the surrogate light chain (SLC) of the pre-B cell receptor (pre-BCR). During early B-cell development, immunoglobulin (Ig) heavy chains pairs with SLCs to form the pre-BCR, a central signaling unit that drives proliferation and survival. Accordingly, germline mutations of IGLL1 (Minegishi J Exp Med 1998) and VPREB1 (Conley Immunol Rev 2005) are associated with profound B-cell defects and agammaglobulinemia in humans. However, somatic deletions of VPREB1 gene are frequent lesions in B-ALL and occur in 〉 10% of B-ALL cases (Mangum et al., Leukemia 2014; Geng et al., Cancer Cell 2015), the significance of which is not clear. Since VPREB1 deletions are typically present at the time of diagnosis and are rarely acquired as secondary lesions at the time of relapse (Kuster Blood 2011), we hypothesized that loss of VPREB1 represents an early and essential event in leukemogenesis. Experimental Approach and Results: For genetic gain and loss of function analysis of VPREB1 and IGLL1, we established leukemia models based on pre-B cells from Igll1-/- mice (Kitamura Cell 1992), and Vpreb1-Igll1 double-transgenic mice (Van Loo Immunity 2007). Loss of Igll1 completely abrogated SLC expression on the surface of pre-B cells. In contrast, VpreB1-Igll1 double-transgenic pre-B cells expressed constitutively higher surface levels of SLC as part of their pre-BCR as evidenced by flow cytometry. Compared to wildtype controls, Igll1-/- pre-B cells lacking the ability to express a functional SLCs were more readily transformed by BCR-ABL1 oncogene. However, pre-B cells of VpreB1-Igll1 transgenic mice, were not permissive to BCR-ABL1 mediated transformation. In agreement with these results, VpreB1-Igll1 double-transgenic pre-B cells were resistant transformation by BCR-ABL1 in vivo. BCR-ABL1-transgenic mice with enforced expression Vpreb1-Igll1 remained disease-free for more than nine months, whereas the vast majority of BCR-ABL1-transgenic mice downregulated pre-BCR surface expression and developed lethal B-ALL within 90 days of birth (n=34, P 〈 0.0001). Compared to wildtype pre-B cells, double-transgenic expression of VpreB-Igll1 interfered with oncogenic BCR-ABL1 tyrosine kinase signaling and suppressed phosphorylation of Btk, Syk and Src kinases resulting in cell cycle arrest and reduced colony formation ability. To test whether SLC tumor suppressive function depends on pre-BCR activity, we studied BCR-ABL1-mediated transformation of VpreB1-Igll1 double-transgenic pre-B cells on a Rag1-deficient background. Rag1-/- pro-B cells lack the ability to rearrange Ig V, D and J-gene segments and cannot express a functional Ig mHC, the central structural element of the pre-BCR. Surprisingly, Rag1-/-VpreB1-Igll1 double-transgenic pro-B cells were also resistant to BCR-ABL1-mediated transformation. These findings provide genetic evidence that Vpreb1 and Igll1 exert tumor suppressive effect on B cells regardless of functional pre-BCR expression. Conclusion: The VpreB and Igll1 surrogate light chain components of the pre-BCR act as a tumor suppressors in pre-B ALL cells. Interestingly, the tumor suppressor function of both VpreB and Igll1 is independent from their SLC-role in pre-BCR signaling: Vpreb1- and Iggl1-mediated tumor suppression was effective, regardless of pre-BCR function. These findings provide genetic evidence that VpreB and Igll1 have pre-BCR- and SLC-independent functions that prevent malignant transformation and limit proliferation of normal pre-B cells. Our findings support the hypothesis that VPREB1 deletion represents an early event during clonal evolution towards pre-B ALL, facilitating subsequent steps of leukemic transformation. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 3263-3263
    Abstract: Abstract 3263 Background: Despite the recent advances in chemotherapy for acute lymphoblastic leukemia (ALL), the development of drug resistance and long-term side effects of current treatments warrant new treatment modalities. Survivin/BIRC5, an inhibitor of apoptosis protein, is critical for the survival and proliferation of cancerous cells, is expressed in AML and ALL cells, and has been implicated in leukemia relapse. In the present study, we test the hypothesis that survivin is critical to the pathway of self-renewal of drug-resistant ALL cells. Methods: For gain of function studies, primary ALL cells were transduced with lentiviral survivin IRES GFP reporter (Survivin GFP) or empty GFP as a control. For loss of function studies, an inducible lentiviral shRNA vector expressing tRFP upon induction with doxycyclin was used. For in vitro evaluation of Survivin, CFU assays were used to monitor self-renewal capability, MTT assays and Trypan blue counts for viability determination were used for drug testing. For in vivo experiments, we used a NOD/SCID IL2Rγ−/- xenograft model with patient-derived ALL cells. Results: Survivin overexpression in primary ALL cells led in vitro to 4-fold more colonies than control in primary and secondary CFU assays and to increased resistance against Vincristine, Dexamethasone and L-Asparaginase (VDL) compared to controls (p 〈 0.05). In vivo, animals injected with ALL cells overexpressing survivin died earlier of leukemia with a median survival time (MST) of 43 days (n=4) compared to control animals (MST=51.5 days) (n=4) (p 〈 0.05). Therefore, overexpression of survivin increases self-renewal of patient-derived ALL cells in vitro and accelerates leukemia development in vivo. Conversely, in vitro inhibition of Survivin using shRNA decreased CFU compared to controls (p 〈 0.0001). In vivo, when animals were injected with Survivin shRNA or non-silencing control shRNA and treated for 4 weeks with VDL, the combined VDL + Survivin shRNA treated group not only lived significantly longer (MST=213 days, n=3) compared to the control group (MST=117 days; n=3) (p 〈 0.05) but remained disease-free until the end of follow-up (Day 213). Immunohistology and flow cytometry staining for huCD45+ cells in various organs showed the absence of leukemia cells in the VDL + shRNA treated group compared to the control, indicating that adjuvant knockdown of Survivin in combination with chemotherapy eradicates drug resistant primary leukemia. To further evaluate loss of function of Survivin in ALL, we used a survivin knockout mouse model. Survivinflox/flox bone marrow cells were retrovirally transformed with BCR-ABL1 p210 or MLL-ENL. Subsequent to leukemic outgrowth, cells were transduced with either GFP control or inducibly deleted using a Cre-GFP vector and GFP signal was quantitated by flow cytometry. Interestingly, Survivin deleted Cre-GFP positive oncogene transformed cells showed reduced proliferation compared to GFP controls (p 〈 0.05), indicating that knockout of Survivin in murine leukemia is required for survival of leukemic cells. Finally, we determined the effect of pharmacological downregulation of Survivin using EZN-3042, a novel locked nucleic acid antisense oligonucleotide (LNA-AsODN) against Survivin. Single agent treatment of 6 primary ALL cases, with 20 mM of a scrambled LNA control (EZN-3088) or EZN-3042, were respectively assayed. Mean viability for EZN-3088 treatments was 78.6% ± 12.0% versus 44.1% ± 10.9% for EZN-3042 (p 〈 0.001). EZN-3042 knockdown of Survivin was confirmed by Western blot. LNA treatment in combination with chemotherapy of a primary Philadelphia chromosome positive (Ph+) ALL resulted in a mean viability of 73.4% ± 1.8% for EZN-3088/Nilotinib versus 3.6% ± 0.5% for EZN-3042/Nilotinib (p 〈 0.001). Primary Ph− ALL cells treated with EZN-3088/VDL resulted in a mean viability of 36.5% ± 0.5% versus 8.3% ± 4.3% for EZN-3042/Nilotinib (p 〈 0.01). Conclusion: Taken together, we show that Survivin is a key component in primary drug resistant ALL cells and adjuvant specific targeting of Survivin using shRNA or EZN3042 has the potential to eradicate relapse of leukemia. Disclosures: Yang: Amgen Inc: Employment, Equity Ownership.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 3763-3763
    Abstract: BACKGROUND: The bone marrow is known to shelter leukemia cells from chemotherapy and contributes to the survival of chemotherapy resistant residual cells, termed minimal residual disease (MRD). We have studied in situ the location of MRD+ ALL cells using a xenograft model of primary ALL cells and have found a novel co-localization of megakaryocytes (MK) with ALL cells. Mature hematopoietic cells have been implicated in modifying the local normal hematopoietic stem cell environment including MK. We hypothesize that MK are associated with the survival of MRD+ ALL cells. For this purpose, we tested the role of MK cells in maintenance and chemoprotection of ALL cells. METHODS: Patient-derived (primary) pre-B ALL cells were engrafted into non-irradiated NOD/SCID IL2Rγ-/- (NSG) mice. Leukemia-bearing mice received 4 weeks of chemotherapy treatment (Vincristine, Dexamethasone, L-Asparaginase; VDL). MRD status of mice was confirmed by detection of human CD45 + CD19+ leukemia cells in the bone marrow by flow cytometry. In situ location of the MRD+ ALL cells was determined by histological analysis and quantitation was performed by Fiji Image J. For in vitro studies, primary pre-B ALL cells were co-cultured for up to 2 days with murine calvaria-derived stromal OP9 cells or MK isolated from C57/BL6 BM primed for with murine thrombopoietin (mTPO) and sorted by flow cytometry for CD41+ MK. Annexin V/7-AAD staining was used for viability determination by flow cytometry. Boyden chamber system with either OP9 cells or MK cells seeded on the bottom and ALL cells on the top of the system was used for migration assays. RESULTS: In situ analysis of MRD+ ALL recipient mice showed that cells MRD+ ALL cells (huCD45+) are located in close proximity to MKs, with 11.57±2.94% of MRD+ ALL cells lying directly adjacent to MKs (0-5μm distance to MK). To further assess the role of MKs in ALL survival in vitro, we compared if MK cells can sustain proliferation and viability of primary leukemia cells like the OP stromal co-culture model that we have established previously. MKs were isolated from BM of C57BL/6 mice by FACS sorting for CD41+ cells from BM primed with mTPO. The sorted population showed a 90% purity of CD41+ cells. MKs were able to maintain ALL cell proliferation 1.90e6 cell count ± 0.48e6 cell count on day 2) and provide chemoprotection from VDL treatment (77.24 ± 2.03% on day 2), which was similar to the effect of OP9 cells on sustained proliferation and viability. Interestingly ALL cells cultured with MKs had a slight reduction in G2/M-phase (8.46±0.31%) 3 days after culture set up without treatment compared to cultures with OP9 stromal cells (13.59±0.14%; P-value 〈 0.0005). In a migration assay, MKs stimulated migration of ALL cells (5.42e5 ±0.72 migrated cells) significantly more than OP9 stromal cells (2.92e5 ±0.72 migrated cells) over a 24 hour period (P-value = 0.0132). Using the SDF1α inhibitor AMD3100 (100µM), migration of ALL cells was only partially inhibited (2.92e5 ±0.72), suggesting additional MK produced factors influence mobilization of human leukemia cells besides SDF1α. Using the recombinant forms of stromal cell-derived factor 1 (SDF1α) and von Willebrand factor (VWF), ALL cell migration was successfully stimulated over 24 hours (6.25e4 ±1.25 and 3.33e4 ±0.72 migrated cells, respectively), and this effect was inhibited using AMD3100, small molecule inhibitor of CXCR4, and anti-VWF antibody respectively. CONCLUSION: Here we show for the first time that co-culture of MK and primary pre-B ALL cells supports their proliferation, viability and protection from chemotherapy similar to murine OP9 stromal cells. Our data warrants further investigation of the underlying mechanism. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Informa UK Limited ; 1998
    In:  Molecular and Cellular Biology Vol. 18, No. 10 ( 1998-10-01), p. 5762-5770
    In: Molecular and Cellular Biology, Informa UK Limited, Vol. 18, No. 10 ( 1998-10-01), p. 5762-5770
    Type of Medium: Online Resource
    ISSN: 1098-5549
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 1998
    detail.hit.zdb_id: 1474919-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Informa UK Limited ; 2005
    In:  Molecular and Cellular Biology Vol. 25, No. 13 ( 2005-07-01), p. 5777-5785
    In: Molecular and Cellular Biology, Informa UK Limited, Vol. 25, No. 13 ( 2005-07-01), p. 5777-5785
    Type of Medium: Online Resource
    ISSN: 1098-5549
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2005
    detail.hit.zdb_id: 1474919-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages