Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  Molecular Cancer Vol. 21, No. 1 ( 2022-03-18)
    In: Molecular Cancer, Springer Science and Business Media LLC, Vol. 21, No. 1 ( 2022-03-18)
    Abstract: Chimeric Antigen Receptor (CAR) T-cells represent a breakthrough in personalized cancer therapy. In this strategy, synthetic receptors comprised of antigen recognition, signaling, and costimulatory domains are used to reprogram T-cells to target tumor cells for destruction. Despite the success of this approach in refractory B-cell malignancies, optimal potency of CAR T-cell therapy for many other cancers, particularly solid tumors, has not been achieved. Factors such as T-cell exhaustion, lack of CAR T-cell persistence, cytokine-related toxicities, and bottlenecks in the manufacturing of autologous products have hampered the safety, effectiveness, and availability of this approach. With the ease and accessibility of CRISPR-Cas9-based gene editing, it is possible to address many of these limitations. Accordingly, current research efforts focus on precision engineering of CAR T-cells with conventional CRISPR-Cas9 systems or novel editors that can install desired genetic changes with or without introduction of a double-stranded break (DSB) into the genome. These tools and strategies can be directly applied to targeting negative regulators of T-cell function, directing therapeutic transgenes to specific genomic loci, and generating reproducibly safe and potent allogeneic universal CAR T-cell products for on-demand cancer immunotherapy. This review evaluates several of the ongoing and future directions of combining next-generation CRISPR-Cas9 gene editing with synthetic biology to optimize CAR T-cell therapy for future clinical trials toward the establishment of a new cancer treatment paradigm.
    Type of Medium: Online Resource
    ISSN: 1476-4598
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2091373-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Experimental Medicine, Rockefeller University Press, Vol. 214, No. 7 ( 2017-07-03), p. 2073-2088
    Abstract: A hierarchically organized cell compartment drives colorectal cancer (CRC) progression. Genetic barcoding allows monitoring of the clonal output of tumorigenic cells without prospective isolation. In this study, we asked whether tumor clone-initiating cells (TcICs) were genetically heterogeneous and whether differences in self-renewal and activation reflected differential kinetics among individual subclones or functional hierarchies within subclones. Monitoring genomic subclone kinetics in three patient tumors and corresponding serial xenografts and spheroids by high-coverage whole-genome sequencing, clustering of genetic aberrations, subclone combinatorics, and mutational signature analysis revealed at least two to four genetic subclones per sample. Long-term growth in serial xenografts and spheroids was driven by multiple genomic subclones with profoundly differing growth dynamics and hence different quantitative contributions over time. Strikingly, genetic barcoding demonstrated stable functional heterogeneity of CRC TcICs during serial xenografting despite near-complete changes in genomic subclone contribution. This demonstrates that functional heterogeneity is, at least frequently, present within genomic subclones and independent of mutational subclone differences.
    Type of Medium: Online Resource
    ISSN: 0022-1007 , 1540-9538
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2017
    detail.hit.zdb_id: 1477240-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Leukemia, Springer Science and Business Media LLC, Vol. 35, No. 10 ( 2021-10), p. 2948-2963
    Abstract: Protein-coding and non-coding genes like miRNAs tightly control hematopoietic differentiation programs. Although miRNAs are frequently located within introns of protein-coding genes, the molecular interplay between intronic miRNAs and their host genes is unclear. By genomic integration site mapping of gamma-retroviral vectors in genetically corrected peripheral blood from gene therapy patients, we identified the EVL/MIR342 gene locus as a hotspot for therapeutic vector insertions indicating its accessibility and expression in human hematopoietic stem and progenitor cells. We therefore asked if and how EVL and its intronic miRNA-342 regulate hematopoiesis. Here we demonstrate that overexpression (OE) of Evl in murine primary Lin − Sca1 + cKit + cells drives lymphopoiesis whereas miR-342 OE increases myeloid colony formation in vitro and in vivo, going along with a profound upregulation of canonical pathways essential for B-cell development or myelopoietic functions upon Evl or miR-342 OE, respectively. Strikingly, miR-342 counteracts its host gene by targeting lymphoid signaling pathways, resulting in reduced pre-B-cell output. Moreover, EVL overexpression is associated with lymphoid leukemia in patients. In summary, our data show that one common gene locus regulates distinct hematopoietic differentiation programs depending on the gene product expressed, and that the balance between both may determine hematopoietic cell fate decision.
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2008023-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 2366-2366
    Abstract: Hematopoietic stem cell (HSC) regulation is controlled by extrinsic and intrinsic factors adapting blood cell production to the need of the organism. To search for novel HSC regulatory genes, our group has established a unique screening approach. By systematically analyzing the entire integration site (IS) repertoire of ten Wiskott-Aldrich syndrome (WAS) patients enrolled in clinical gene therapy trials, we hypothesize to identify novel key regulatory genes in hematopoiesis. By applying our screening pipeline based on the number and distance of IS to the transcription start sites (TSS) of genes, we observed a statistically significant number of therapeutic vector insertions close to 32 single genes in nine out of ten WAS patients including the Evl/miR-342 gene locus which has not been linked to hematopoiesis so far. Common insertion sites close to Evl/miR-342 accounted for up to 1.2% of relative sequencing reads within the peripheral blood (PB) of patients and clones harboring such integrations contributed to hematopoiesis for up to six years. We therefore hypothesized that the protein-coding gene Evl and/or its intronic miR-342 - which share a common genomic locus - may regulate hematopoiesis. Evl has been shown to play a pivotal role in actin cytoskeleton remodeling, and to interact with RAD51 complexes within homologous recombination. MiR-342 is a direct target of the transcription factor PU.1, which drives myeloid differentiation, and accelerates all-trans retinoic acid (ATRA)-induced differentiation of APL blasts. First of all, we investigated the candidate gene RNA expression in purified murine hematopoietic cell populations. Interestingly, we observed that Evl and miR-342 are not highly expressed in murine Lineage- Sca1+ ckit+ (LSK) cells but their expression increases profoundly with blood cell differentiation. While Evl expression was highest in lymphocytes (20-30 fold higher as compared to LSK cells), miR-342 was expressed at the highest level in macrophages (300 fold higher compared to LSK cells). To study the role of the candidates in hematopoiesis, we overexpressed Evl and miR-342 by using lentiviral vectors in murine primary LSK cells. Gene expression profiling of LSK cells overexpressing Evl revealed that 32% (62 out of 190) of the deregulated transcripts were involved in hematopoietic system development and function. Moreover, the top deregulated canonical pathways detected are essential for the development of B-cells (p=2.59*10-11). However, pathways important for myeloid cells such as immune cell trafficking and, more specifically, granulocytic adhesion and diapedesis (p=2.59*10-3) were significantly upregulated within miR-342- positive LSK cells. Functional analysis showed that Evl overexpression leads to a three- to fourfold increase of preB-cell colonies compared to control vector-transduced LSK cells. By contrast, miR-342 overexpressing cells formed a twofold higher number of myeloid colonies in semisolid medium. Next, the influence of Evl and its intronic miRNA on self-renewal and multilineage differentiation in vivo was investigated in serial bone marrow (BM) transplantation experiments. Within the PB of primary recipient mice, we detected a decrease of Evl-positive cells over time (week 4: 20.6 ± 9.6%; week 20: 4.7 ± 2.4%). Within the spleens a significantly higher donor-derived B-cell frequency was detectable (Evl: 63.6 ± 17.1%; Mock: 39.9 ± 18.3%). In line with our in vitro results, we detected a 4.3 fold higher frequency of Evl positive B-cells four weeks after secondary transplantation (Evl: 68.1 ± 9.8 %; Mock: 15.9 ± 7.5%). In summary, our data show that different hematopoietic differentiation programs are driven by one common gene locus depending on the expressed gene product. While the protein-coding gene Evl drives B-cell lymphopoiesis, its intronic miR-342 promotes myeloid differentiation. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: JCO Precision Oncology, American Society of Clinical Oncology (ASCO), , No. 5 ( 2021-11), p. 687-694
    Type of Medium: Online Resource
    ISSN: 2473-4284
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2021
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 13, No. 7 ( 2023-07-07), p. 1636-1655
    Abstract: Chimeric antigen receptor (CAR) T cell therapy has shown promise in treating hematologic cancers, but resistance is common and efficacy is limited in solid tumors. We found that CAR T cells autonomously propagate epigenetically programmed type I interferon signaling through chronic stimulation, which hampers antitumor function. EGR2 transcriptional regulator knockout not only blocks this type I interferon–mediated inhibitory program but also independently expands early memory CAR T cells with improved efficacy against liquid and solid tumors. The protective effect of EGR2 deletion in CAR T cells against chronic antigen-induced exhaustion can be overridden by interferon-β exposure, suggesting that EGR2 ablation suppresses dysfunction by inhibiting type I interferon signaling. Finally, a refined EGR2 gene signature is a biomarker for type I interferon–associated CAR T cell failure and shorter patient survival. These findings connect prolonged CAR T cell activation with deleterious immunoinflammatory signaling and point to an EGR2–type I interferon axis as a therapeutically amenable biological system. Significance: To improve CAR T cell therapy outcomes, modulating molecular determinants of CAR T cell–intrinsic resistance is crucial. Editing the gene encoding the EGR2 transcriptional regulator renders CAR T cells impervious to type I interferon pathway–induced dysfunction and improves memory differentiation, thereby addressing major barriers to progress for this emerging class of cancer immunotherapies. This article is highlighted in the In This Issue feature, p. 1501
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2607892-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Annals of Oncology, Elsevier BV, Vol. 2 ( 1991-02), p. 33-38
    Type of Medium: Online Resource
    ISSN: 0923-7534
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1991
    detail.hit.zdb_id: 2003498-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Elsevier BV ; 2001
    In:  International Journal of Hygiene and Environmental Health Vol. 203, No. 4 ( 2001-1), p. 301-310
    In: International Journal of Hygiene and Environmental Health, Elsevier BV, Vol. 203, No. 4 ( 2001-1), p. 301-310
    Type of Medium: Online Resource
    ISSN: 1438-4639
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2001
    detail.hit.zdb_id: 2039765-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 2431-2431
    Abstract: Abstract 2431 Insertional activation of the zinc finger transcription factor ecotropic viral integration site 1 (EVI1) by promoter and enhancer elements within the gamma-retroviral vector LTR has led to clonal dominance and malignant transformation in clinical gene therapy of chronic granulomatous disease (cGD). EVI1 has been shown to inhibit stress induced cell death or TGFβ signaling and is essential for embryonic development. Cytogenetic rearrangements leading to the activation of the gene locus are a marker for poor prognosis in myeloid malignancies. Very little is known about its larger splice variant MDS1/EVI1 in normal or malignant hematopoiesis. We aim to systematically analyze the role of deregulated EVI1 and MDS1/EVI1 expression in hematopoiesis to further elucidate the stepwise progression of clonal selection up to malignant transformation. Lentiviral vector particles encoding for EVI1 (E) or MDS1/EVI1 (ME) and eGFP as marker protein were produced to stably overexpress the transgenes. Transgene expression was verified in myeloid HL60 cells by western blotting and immunofluorescence. Analysis of growth kinetics revealed a 1.5 – 3 fold lower proliferation of ME and E expressing cells as compared to eGFP control vector transduced cells. Additional analysis on cell cycle distribution revealed that in both, E and ME transduced cells, a higher percentage of cells could be detected in the G1/G0 phase of the cell cycle (52.5 ± 1.6% in ME cells and 55.2 ± 1.8% in E cells) compared to untransduced (48.9 ± 1.6%) and control vector cells (47.7 ± 0.3%) (p 〈 0.01). Consequently, a 1.3 – 1.4 fold lower proportion of E and ME cells was observed in the S/G2/M phases compared to control cells. For further analyzing the transgene effect on cell cycle activity, 3 populations with different intensity of transgene expression (negative, intermediate and high eGFP+ cells) were isolated. With raising ME expression a 5 fold decrease of cells in sub-G1 phase but a 1.3 fold increase of cells in G1/G0 phase was detected. In the highly EVI1 expressing fraction 91.4% arrested in G1/G0 phase of the cell cycle (50.4% in G1/G0 phase in eGFP− E cells). In line with this, we observed a decrease of eGFP+ E and ME transduced human hematopoietic CD34+ cells from 8% at day 3 after transduction to 0.5 – 2.5% at day 14, respectively. In contrast, the proportion of eGFP+ human primary cells remained stable for the time period analyzed after transduction with the control vector. To investigate E and ME overexpression in vivo, hematopoietic stem and progenitor cells were isolated from murine bone marrow, transduced with the lentiviral vectors (LV) and transplanted into lethally irradiated recipient mice. Although all recipients showed donor cell engraftment, eGFP expression dropped from 47.7 – 49% at 4 to 7 weeks to 0.9 – 4.4% at 40 weeks after transplantation (BMT). Interestingly, EVI1 transplanted mice showed a significantly lower thrombocyte recovery (2.2 fold; p 〈 0.05) within the first 13 weeks after BMT in comparison to untransduced, control vector or ME transplanted mice. We then asked if the cell cycle arrest in G1 is associated with genetic instability, as patients with insertional activation of EVI1 developed a myelodysplastic syndrome with monosomy 7. E and ME transduced human fibroblasts showed a significant higher percentage of cells with abnormal centrosome numbers as compared to controls (p 〈 0.05). In addition, staining of γ-H2AX, an indirect marker for double strand breaks (DSB), in E and ME transduced HL60 cells revealed that EVI1+ γ-H2AX+ cells were 2-fold enriched in G1 as compared to control vector transduced cells. In summary, our data show that EVI1 overexpression causes G1 cell cycle arrest of hematopoietic cells that may be caused by genetic instability or inefficient DSB repair. No sign for clonal selection could be detected, neither in vitro nor in vivo, but EVI1 transplanted mice showed a delay in thrombocyte recovery. Systematic investigation of EVI1 and MDS1/EVI1 overexpression in human hematopoietic cells will help us to gain insights into regulatory processes of hematopoietic stem cells and mechanisms leading to dominant clones in gene modified hematopoiesis. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Stem Cells, Oxford University Press (OUP), Vol. 30, No. 9 ( 2012-09-01), p. 1961-1970
    Abstract: Hematopoietic stem cells (HSCs) generate all mature blood cells during the whole lifespan of an individual. However, the clonal contribution of individual HSC and progenitor cells in steady-state hematopoiesis is poorly understood. To investigate the activity of HSCs under steady-state conditions, murine HSC and progenitor cells were genetically marked in vivo by integrating lentiviral vectors (LVs) encoding green fluorescent protein (GFP). Hematopoietic contribution of individual marked clones was monitored by determination of lentiviral integration sites using highly sensitive linear amplification-mediated-polymerase chain reaction. A remarkably stable small proportion of hematopoietic cells expressed GFP in LV-injected animals for up to 24 months, indicating stable marking of murine steady-state hematopoiesis. Analysis of the lentiviral integration sites revealed that multiple hematopoietic clones with both myeloid and lymphoid differentiation potential contributed to long-term hematopoiesis. In contrast to intrafemoral vector injection, intravenous administration of LV preferentially targeted short-lived progenitor cells. Myelosuppressive treatment of mice prior to LV-injection did not affect the marking efficiency. Our study represents the first continuous analysis of clonal behavior of genetically marked hematopoietic cells in an unmanipulated system, providing evidence that multiple clones are simultaneously active in murine steady-state hematopoiesis.
    Type of Medium: Online Resource
    ISSN: 1066-5099 , 1549-4918
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2012
    detail.hit.zdb_id: 2030643-X
    detail.hit.zdb_id: 1143556-2
    detail.hit.zdb_id: 605570-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages