In:
Applied Physics Letters, AIP Publishing, Vol. 76, No. 5 ( 2000-01-31), p. 625-627
Abstract:
Precise control of composition and microstructure is critical for the production of (BaxSr1−x)Ti1+yO3+z (BST) dielectric thin films with the large dependence of permittivity on electric field, low losses, and high electrical breakdown fields that are required for successful integration of BST into tunable high-frequency devices. Here, we present results on composition-microstructure-electrical property relationships for polycrystalline BST films produced by magnetron-sputter deposition, that are appropriate for microwave and millimeter-wave applications such as varactors and frequency triplers. Films with controlled compositions were grown from a stoichiometric Ba0.5Sr0.5TiO3 target by control of the background processing gas pressure. It was determined that the (Ba+Sr)/Ti ratios of these BST films could be adjusted from 0.73 to 0.98 by changing the total (Ar+O2) process pressure, while the O2/Ar ratio did not strongly affect the metal ion composition. Film crystalline structure and dielectric properties as a function of the (Ba+Sr)/Ti ratio are discussed. Optimized BST films yielded capacitors with low dielectric losses (0.0047), among the best reported for sputtered BST, while still maintaining tunabilities suitable for device applications.
Type of Medium:
Online Resource
ISSN:
0003-6951
,
1077-3118
Language:
English
Publisher:
AIP Publishing
Publication Date:
2000
detail.hit.zdb_id:
211245-0
detail.hit.zdb_id:
1469436-0
Bookmarklink