Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Lancet Haematology, Elsevier BV, Vol. 10, No. 7 ( 2023-07), p. e495-e509
    Type of Medium: Online Resource
    ISSN: 2352-3026
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 1256-1256
    Abstract: Genetic alterations of the mixed-lineage leukemia (MLL) gene are commonly identified in acute leukemias. In acute myeloid leukemia (AML), a partial tandem duplication (PTD) of MLL occurs in about 5-10% of AML patients and is associated with adverse prognosis. The mutation leads to an in-frame duplication of exons 5 to 11 resulting in the production of an aberrant MLL protein. Unlike chromosomal rearrangements of MLL, this mutation does not affect the functional histone 3 lysine 4 (H3K4) methyltransferase domain. However, AMLs carrying a MLL-PTD and MLL-rearranged leukemias share some common characteristics, such as overexpression of HOXA-cluster genes and dysregulated epigenetic functions. Recently, leukemias with various MLL-translocations have been shown to be dependent on the histone 3 lysine 79 (H3K79) methyltransferase, DOT1L, and are sensitive to EPZ004777, a recently described selective small-molecule DOT1L inhibitor. EPZ-5676, a DOT1L-inhibitor with improved potency and drug-like properties, has recently been identified and is currently under clinical investigation. To evaluate the therapeutic potential of DOT1L-inhibition in MLL-PTD positive leukemia cells, we assessed the effect of EPZ004777 on the MLL-PTD containing leukemia cell lines MUTZ-11 and EOL-1. In vitro treatment with EPZ004777 over a 14-day period resulted in dramatic reduction of cell proliferation compared to DMSO vehicle control in both cell lines beginning 7 days after the start of treatment. Similar results were obtained for MOLM-13, a leukemia cell line harboring a MLL-translocation, but not for HL-60, a non-MLL-rearranged leukemia cell line. To further investigate whether these findings reflect a selective response to EPZ004777 or non-specific drug toxicity, we first explored the genome-wide H3K79 dimethylation (H3K79me2) profile using chromatin immunoprecipitation (ChIP) followed by next generation sequencing in untreated MUTZ-11 cells. Across the HOXA-cluster locus, we detected a similar H3K79me2 distribution pattern as previously reported in MLL-rearranged leukemias. Further analysis of H3K79me2 in MUTZ-11 and EOL-1 cells after treatment with the inhibitor showed profound suppression of those marks as assessed by western blot and ChIP-PCR. Subsequent global gene expression analysis revealed concurrent downregulation of HOXA-cluster and other MLL-target genes after 7 days of DOT1L inhibition. To investigate the effect of EPZ004777 on the MLL-PTD positive cells in more detail, we analyzed cell differentiation and apoptosis upon a 10-day exposure to the compound. As previously described for EPZ004777-sensitive MLL-rearranged leukemias, drug treatment resulted in increased expression of CD11b and morphological changes consistent with myeloid cell differentiation. We further observed apoptotic cell death after EPZ004777 treatment as measured by an increase in the percentage of Annexin V positive cells and cleaved Caspase 3 protein compared to vehicle controls. In order to determine the effect of DOT1L inhibition in vivo, we tested the recently identified DOT1L-inhibitor, EPZ-5676, for its ability to inhibit leukemia growth in a subcutaneous EOL-1 xenograft model in immunocompromised rats. Similar to what we observed in vitro, continuous intravenous administration over 21 days led to substantial dose-dependent inhibition of tumor growth, abrogation of H3K79me2, and concurrent downregulation of selected MLL-target genes. Thus, we demonstrate unexpected sensitivity of MLL-PTD containing leukemia cell lines to the DOT1L inhibitors EPZ004777 in vitro and EPZ-5676 in vivo. These data suggest that patients with myeloid malignancies carrying this particular mutation might benefit from treatment with therapeutic approaches that target DOT1L. Disclosures: Daigle: Epizyme, Inc: Employment, Equity Ownership. Olhava:Epizyme Inc.: Employment. Pollock:Epizyme Inc.: Employment, Equity Ownership, Patents & Royalties, Stock Options Other. Armstrong:Epizyme Inc.: Has consulted for Epizyme Inc. Other.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Haematologica, Ferrata Storti Foundation (Haematologica), Vol. 106, No. 11 ( 2021-05-27), p. 2986-2989
    Type of Medium: Online Resource
    ISSN: 1592-8721 , 0390-6078
    Language: Unknown
    Publisher: Ferrata Storti Foundation (Haematologica)
    Publication Date: 2021
    detail.hit.zdb_id: 2186022-1
    detail.hit.zdb_id: 2030158-3
    detail.hit.zdb_id: 2805244-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 692-692
    Abstract: BACKGROUND: Midostaurin is a first-generation, type I multi-targeted kinase inhibitor with inhibitory activity against FLT3-ITD and -TKD mutations. Midostaurin is approved by FDA and EMA in combination with intensive induction and consolidation chemotherapy for adult patients with AML exhibiting an activating FLT3 mutation; the EMA label also includes single-agent maintenance therapy following consolidation chemotherapy. We conducted a phase-II trial (AMLSG 16-10) to evaluate midostaurin with induction chemotherapy followed by allogeneic hematopoietic-cell transplantation (HCT) and a one-year midostaurin maintenance therapy in younger and older patients with acute myeloid leukemia (AML) and FLT3 internal tandem duplication (ITD). METHODS: Patients 18 to 70 years of age with newly diagnosed FLT3-ITD-positive AML were eligible. Primary and key secondary endpoints were event-free (EFS) and overall survival (OS); results were compared to those of a historical control cohort of 415 patients with FLT3-ITD AML. Statistical analysis was performed using a double-robust adjustment with propensity score weighting and covariate adjustment. Major differences in trial design compared to the pivotal CALGB 10603/RATIFY trial were: i) only AML with FLT3-ITD were eligible; ii) AML with FLT3 tyrosine kinase domain mutations (only) and core-binding factor AML were not eligible; iii) older patients 60-70 years of age were eligible; iv) all patients were assigned to allogeneic HCT; v) a one-year maintenance treatment with midostaurin was included also after allogeneic HCT; vi) a continuous dosing schedule of midostaurin was applied with the aim to achieve a better target inhibition. Results: The trial accrued 440 patients, including 312 younger (18-60 yrs) and 128 older (61-70 yrs) patients. Complete remission (CR)/CR with incomplete hematologic recovery rate, median EFS and OS of the 440 patients were 74.9%, 13.6 and 36.2 months, respectively. Multivariate analysis of EFS showed a highly significant hazard reduction for an event for patients treated within AMLSG 16-10 trial compared to the historical controls (HR 0.55; 95%-confidence interval [CI], 0.47, 0.65; P & lt;0.001); this effect was significant in the younger (HR 0.59; 95%-CI, 0.49, 0.71; P & lt;0.001) and the older patient cohort (HR 0.42; 95%-CI, 0.30, 0.60; P & lt;0.001). Multivariate analysis also showed a highly significant beneficial effect on OS (HR 0.57; 95%-CI, 0.47, 0.68; P & lt;0.001), again for both age subgroups. Allogeneic HCT in first CR/CRi was performed according to protocol in 199 of 440 (45%) patients (48% and 38% in younger and older patients, respectively), and an additional 60 patients received allogeneic HCT in firstline therapy (n=33 pts. in CR/CRi after salvage therapy and 27 pts. with active disease); the treatment effect of midostaurin remained significant in sensitivity analysis including allogeneic HCT (n=259) as a time-dependent covariate. Addition of midostaurin to chemotherapy was safe in younger and older patients. Conclusions: In comparison to a historical control cohort, the addition of midostaurin to intensive therapy led to a significant improvement in EFS and OS in both younger and older adult patients with AML and FLT3-ITD. Figure: Survival distribution for the primary endpoint event-free survival (EFS) and key secondary endpoint overall survival (OS) according to study population and age group. A EFS by cohort and age group (≤60 versus & gt;60 years) B OS by cohort and age group (≤60 versus & gt;60 years) Figure 1 Figure 1. Disclosures Döhner: Astellas: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; AstraZeneca: Consultancy, Honoraria; Astex: Consultancy, Honoraria; Amgen: Consultancy, Honoraria, Research Funding; Agios: Consultancy, Honoraria, Research Funding; Abbvie: Consultancy, Honoraria, Research Funding; GEMoaB: Consultancy, Honoraria; Bristol Myers Squibb: Consultancy, Honoraria, Research Funding; Berlin-Chemie: Consultancy, Honoraria; Helsinn: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Jazz: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding; Oxford Biomedicals: Consultancy, Honoraria; Pfizer: Research Funding; Roche: Consultancy, Honoraria; Gilead: Consultancy, Honoraria; Ulm University Hospital: Current Employment. Fiedler: Servier: Consultancy, Other: Meeting attendance, Preparation of information material; Stemline: Consultancy; Daiichi Sanyko: Consultancy, Other: Meeting attendance, Preparation of information material; Pfizer: Consultancy, Honoraria, Research Funding; Novartis: Honoraria; MorphoSys: Consultancy, Honoraria; Jazz: Consultancy, Honoraria, Other: Meeting attendance, Preparation of information material; Celgene: Consultancy, Honoraria; Ariad/Incyte: Honoraria; Amgen: Consultancy, Honoraria, Other: Meeting attendance, Preparation of information material, Patents & Royalties, Research Funding; Abbvie: Consultancy, Honoraria, Other: Meeting attendance, Preparation of information material. Wulf: Gilead: Consultancy, Honoraria; Novartis: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Clinigen: Consultancy, Honoraria. Salih: BMS: Honoraria; Celgene: Honoraria; Pfizer: Honoraria; Synimmune GmbH: Honoraria; Novartis: Honoraria. Lübbert: Imago BioSciences: Honoraria; Janssen: Honoraria, Research Funding; Pfizer: Honoraria; Syros: Honoraria; Aristopharm: Research Funding; Cheplapharm: Research Funding; Janssen: Research Funding; Teva: Research Funding; Hexal: Honoraria; Astex: Honoraria; Abbvie: Honoraria. Kühn: Abbvie: Honoraria; Kura Oncology: Honoraria, Research Funding; Pfizer: Honoraria. Schroeder: Abbvie: Honoraria; Astellas: Honoraria; Celgene: Honoraria; Janssen: Honoraria; Jazz: Honoraria; Novartis: Honoraria; Takeda: Honoraria; Pfizer: Honoraria. Salwender: Oncopeptides: Honoraria; GlaxoSmithKline: Honoraria, Other: TRAVEL, ACCOMMODATIONS, EXPENSES; Sanofi: Honoraria, Other: TRAVEL, ACCOMMODATIONS, EXPENSES; Takeda: Honoraria; Amgen: Honoraria, Other: TRAVEL, ACCOMMODATIONS, EXPENSES; Chugai: Honoraria; AbbVie: Honoraria, Other: TRAVEL, ACCOMMODATIONS, EXPENSES; Janssen-Cilag: Honoraria, Other: TRAVEL, ACCOMMODATIONS, EXPENSES; Bristol-Myers Squibb/Celgene: Honoraria, Other: TRAVEL, ACCOMMODATIONS, EXPENSES; Pfizer: Honoraria. Götze: Abbvie: Honoraria; Celgene/BMS: Honoraria, Research Funding. Westermann: Amgen: Consultancy, Honoraria; BMS: Honoraria; Novartis: Consultancy, Honoraria; Stem Cell Line: Consultancy, Honoraria; Abbvie: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria; Sanofi: Consultancy, Honoraria; Astellas: Honoraria. Fransecky: Abbvie: Honoraria, Research Funding; Takeda: Honoraria; Amgen: Honoraria; Novartis: Honoraria; Medac: Honoraria. Mayer: Novartis: Other: Travel support; Celgene: Other: Travel support; Roche: Other: Travel support; Amgen: Other: Travel support; BMS: Other: Travel support; Pfizer: Other: Travel support; Jazz: Other: Travel support; Astellas: Other: Travel support. Hertenstein: Sanofi: Honoraria; Novartis: Honoraria; Celgene: Honoraria; BMS: Honoraria. Tischler: AstraZeneca: Other: Travel support; Novartis: Other: Travel support; Janssen: Honoraria; GSK: Other: Travel support; Sanofi-Aventis: Other: Travel support; Abbvie: Other: Travel support. Paschka: Abbvie: Honoraria, Other: Travel support; Agios: Honoraria, Speakers Bureau; Astellas: Honoraria, Speakers Bureau; Astex: Honoraria; Celgene: Honoraria, Other: Travel support; Jazz: Honoraria; Novartis: Honoraria, Other: Travel support; Otsuka: Honoraria; Pfizer: Honoraria; Sunesis: Honoraria; BMS: Other, Speakers Bureau; Celgene: Honoraria; Janssen: Other; Takeda: Other. Gaidzik: Janssen: Speakers Bureau; Pfizer: Speakers Bureau; Abbvie: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Thol: Abbvie: Honoraria; Astellas: Honoraria; BMS/Celgene: Honoraria, Research Funding; Jazz: Honoraria; Novartis: Honoraria; Pfizer: Honoraria. Heuser: Tolremo: Membership on an entity's Board of Directors or advisory committees; Daiichi Sankyo: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer Pharma AG: Research Funding; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Astellas: Research Funding; Jazz: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Honoraria; BMS/Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche: Membership on an entity's Board of Directors or advisory committees, Research Funding; Karyopharm: Research Funding; BergenBio: Research Funding; AbbVie: Membership on an entity's Board of Directors or advisory committees, Research Funding. Schlenk: Astellas: Honoraria, Research Funding, Speakers Bureau; Celgene: Honoraria; Daiichi Sankyo: Honoraria, Research Funding; Hexal: Honoraria; Neovio Biotech: Honoraria; Novartis: Honoraria; Pfizer: Honoraria, Research Funding, Speakers Bureau; Roche: Honoraria, Research Funding; AstraZeneca: Research Funding; Boehringer Ingelheim: Research Funding; Abbvie: Honoraria; Agios: Honoraria. Bullinger: Abbvie: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria; Astellas: Honoraria; Bristol-Myers Squibb / Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bayer: Research Funding; Daiichi Sankyo: Honoraria, Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Hexal: Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceutical: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Menarini: Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees. Döhner: Amgen: Honoraria; BMS/Celgene: Honoraria, Research Funding; Janssen: Honoraria; Jazz: Honoraria; Novartis: Honoraria, Research Funding; Roche: Honoraria; Daiichi Sankyo: Honoraria; Agios: Research Funding; Astex: Research Funding; Astellas: Research Funding. Ganser: Novartis: Honoraria; Jazz Pharmaceuticals: Honoraria; Celgene: Honoraria. OffLabel Disclosure: Midostaurin as single-agent maintenance therapy following allogeneic hematopoietic cell transplantation
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 2010-2013
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 31, No. 1 ( 2013-01-01), p. 95-103
    Abstract: To evaluate the prognostic value of ecotropic viral integration 1 gene (EVI1) overexpression in acute myeloid leukemia (AML) with MLL gene rearrangements. Patients and Methods We identified 286 patients with AML with t(11q23) enrolled onto German-Austrian Acute Myeloid Leukemia Study Group and Dutch-Belgian-Swiss Hemato-Oncology Cooperative Group prospective treatment trials. Material was available from 177 AML patients for EVI1 expression analysis. Results We divided 286 MLL-rearranged AMLs into three subgroups: t(9;11)(p22;q23) (44.8%), t(6;11)(q27;q23) (14.7%), and t(v;11q23) (40.5%). EVI1 overexpression (EVI1 + ) was found in 45.8% of all patients with t(11q23), with t(6;11) showing the highest frequency (83.9%), followed by t(9;11) at 40.0%, and t(v;11q23) at 34.8%. Concurrent gene mutations were rare or absent in all three subgroups. Within all t(11q23) AMLs, EVI1 + was the sole prognostic factor, predicting for inferior overall survival (OS; hazard ratio [HR], 2.06; P = .003), relapse-free survival (HR, 2.28; P = .002), and event-free survival (HR, 1.79; P = .009). EVI1 + AMLs with t(11q23) in first complete remission (CR) had a significantly better outcome after allogeneic transplantation compared with other consolidation therapies (5-year OS, 54.7% v 0%; Mantel-Byar, P = .0006). EVI1 − t(9;11) AMLs had lower WBC counts, more commonly FAB M5 morphology, and frequently had additional trisomy 8 (39.6%; P 〈 .001). Among t(9;11) AMLs, EVI1 + again was the sole independent adverse prognostic factor for survival. Conclusion Deregulated EVI1 expression defines poor prognostic subsets among AML with t(11q23) and AML with t(9;11)(p22;q23). Patients with EVI1 + MLL-rearranged AML seem to benefit from allogeneic transplantation in first CR.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2013
    detail.hit.zdb_id: 2005181-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 1441-1441
    Abstract: NPM1mutant (NPM1mut) and MLL1-rearranged (MLL-r) acute myeloid leukemias (AMLs) exhibit aberrant expression of HOX and MEIS1 transcription factors and commonly harbor an activating mutation in the receptor tyrosine kinase FLT3. Pharmacologic inhibition of the menin-MLL1 complex reverses leukemogenic gene expression including MEIS1 and FLT3 and represents a therapeutic opportunity for the treatment of these leukemias. Here, we investigate the contribution of the menin-MLL1 complex to leukemic FLT3 signaling and assess the therapeutic potential of dual menin-MLL1 and FLT3 targeting. First, we performed RNA sequencing to delineate transcriptional changes associated with menin-MLL1 inhibition (-i) using the small molecule inhibitor MI503 in NPM1mut and MLL-r AMLs (OCI-AML3 and MV411 cells). In both leukemias, we confirmed MEIS1 and its target gene FLT3 to be among the most significantly downregulated genes. These results were validated in several human cell lines of NPM1mut or MLL-r AMLs and in a genetically engineered murine AML model harboring an NPM1mut and an internal tandem duplication mutation in the FLT3 gene (Npm1mut/+Flt3ITD/+,now referred to as Npm1mutFlt3ITD). Allele-specific qPCR upon MI503 treatment confirmed profound suppression of the FLT3ITD allele present in the MLL-r MV411 and MOLM13 cells. Total FLT3 protein expression was also reduced upon MI503 treatment in all tested NPM1mut and MLL-r AMLs. Next, we assessed the therapeutic potential of combined menin-MLL1-i and FLT3-i in the FLT3-ITD positive MLL-r and NPM1mut leukemias. We found dramatic synergistic growth inhibition and substantially enhanced apoptosis when combining MI503 with the specific small molecule FLT3 inhibitor AC220 (Quizartinib) compared to monotreatment or vehicle control in the FLT3ITD positive MLL-r MV4-11 and MOLM-13 cells. Similar results were obtained when MI503 was combined with other specific FLT3 inhibitors - Crenolanib and Gilteritinib. As the murine Npm1mutFlt3ITD AML cells harbor the Flt3ITD F692L gatekeeper mutation that conveys drug resistance to most FLT3 inhibitors, we used Ponatinib as a combination partner for MI503 in these cells and found similar synergistic suppression of proliferation and colony formation. No drug sensitivity to single or combo treatment was observed in the human HL60 and NB4 cells, or the murine Hoxa9-Meis1 transformed cells (all wildtype for NPM1, MLL, FLT3). To investigate the mechanism of drug synergy we then performed immunoblotting of phosphorylated (activated) FLT3 (pFLT3). As expected, we observed reduced pFLT3 upon direct FLT3 inhibition with AC220 and found decreased total FLT3 and pFLT3 with MI503 monotreatment. Of note, we observed the most pronounced pFLT3 reduction with combo treatment, most likely reflecting the cooperative effect of direct pFLT3 inhibition with AC220 and transcriptional suppression of total FLT3 via MI503. Transcriptional profiling revealed most dramatic reduction of FLT3 downstream signature gene expression including MYC and MYC-dependent genes upon combinatorial treatment compared to single drug or vehicle controls. Ectopic expression of Meis1 or Hoxa9-Meis1 in the Npm1mutFlt3ITD cells led to increased Flt3 gene and protein expression and partially rescued the anti-proliferative effect of MI503 and combined menin-MLL1-i and FLT3-i. Next, we assessed the combo drug regimen in a cell line derived leukemic xenograft murine model in vivo. We found significantly reduced leukemia burden defined by bone marrow engraftment after 14 days of treatment within the combo versus the single drug or vehicle control animals. In a separate experiment, animals that had been treated with the drug combo in vivo had a dramatically enhanced survival compared to the control groups. We then evaluated single and combo drug effects on five primary human NPM1mutFLT3ITD AML patient samples in a human stroma cell co-culture model. The most profound anti-leukemic effect was again detected with the combo treatment compared to all other controls. In summary, we demonstrate synergistic on-target activity against mutant FLT3 signaling with combined menin-MLL1 and FLT3 inhibition in leukemias with NPM1mut or MLL-r in vitro and in vivo. This concept may represent a novel therapeutic opportunity against these AMLs harboring a prognostically adverse FLT3-ITD. Disclosures Vassiliou: Kymab Ltd: Consultancy, Other: Minor Stockholder; Oxstem Ltd: Consultancy; Celgene: Research Funding. Armstrong:Mana Therapeutics: Consultancy, Equity Ownership; Accent Therapeutics: Consultancy, Equity Ownership; OxStem Oncology: Consultancy, Equity Ownership; Syros Pharmaceuticals: Consultancy, Equity Ownership; C4 Therapeutics: Consultancy, Equity Ownership; Cyteir Therapeutics: Consultancy, Equity Ownership; Janssen: Research Funding; Novartis: Research Funding; AstraZeneca: Research Funding; Epizyme, Inc.: Consultancy, Equity Ownership; Imago Biosciences, Inc.: Consultancy, Equity Ownership. Kühn:Pfizer: Consultancy; ABBVIE: Consultancy; Daiichi Sankyo: Other: travel Support; Celgene: Other: travel support.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 6, No. 10 ( 2016-10-01), p. 1166-1181
    Abstract: Homeobox (HOX) proteins and the receptor tyrosine kinase FLT3 are frequently highly expressed and mutated in acute myeloid leukemia (AML). Aberrant HOX expression is found in nearly all AMLs that harbor a mutation in the Nucleophosmin (NPM1) gene, and FLT3 is concomitantly mutated in approximately 60% of these cases. Little is known about how mutant NPM1 (NPM1mut) cells maintain aberrant gene expression. Here, we demonstrate that the histone modifiers MLL1 and DOT1L control HOX and FLT3 expression and differentiation in NPM1mut AML. Using a CRISPR/Cas9 genome editing domain screen, we show NPM1mut AML to be exceptionally dependent on the menin binding site in MLL1. Pharmacologic small-molecule inhibition of the menin–MLL1 protein interaction had profound antileukemic activity in human and murine models of NPM1mut AML. Combined pharmacologic inhibition of menin–MLL1 and DOT1L resulted in dramatic suppression of HOX and FLT3 expression, induction of differentiation, and superior activity against NPM1mut leukemia. Significance: MLL1 and DOT1L are chromatin regulators that control HOX, MEIS1, and FLT3 expression and are therapeutic targets in NPM1mut AML. Combinatorial small-molecule inhibition has synergistic on-target activity and constitutes a novel therapeutic concept for this common AML subtype. Cancer Discov; 6(10); 1166–81. ©2016 AACR. See related commentary by Hourigan and Aplan, p. 1087. This article is highlighted in the In This Issue feature, p. 1069
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2607892-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Haematologica, Ferrata Storti Foundation (Haematologica), Vol. 108, No. 10 ( 2023-04-27), p. 2837-2843
    Type of Medium: Online Resource
    ISSN: 1592-8721 , 0390-6078
    Language: Unknown
    Publisher: Ferrata Storti Foundation (Haematologica)
    Publication Date: 2023
    detail.hit.zdb_id: 2186022-1
    detail.hit.zdb_id: 2030158-3
    detail.hit.zdb_id: 2805244-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2021
    In:  Current Opinion in Hematology Vol. 28, No. 5 ( 2021-09), p. 356-363
    In: Current Opinion in Hematology, Ovid Technologies (Wolters Kluwer Health), Vol. 28, No. 5 ( 2021-09), p. 356-363
    Abstract: Comprehensive sequencing studies aimed at determining the genetic landscape of myeloid neoplasms have identified epigenetic regulators to be among the most commonly mutated genes. Detailed studies have also revealed a number of epigenetic vulnerabilities. The purpose of this review is to outline these vulnerabilities and to discuss the new generation of drugs that exploit them. Recent findings In addition to deoxyribonucleic acid-methylation, novel epigenetic dependencies have recently been discovered in various myeloid neoplasms and many of them can be targeted pharmacologically. These include not only chromatin writers, readers, and erasers but also chromatin movers that shift nucleosomes to allow access for transcription. Inhibitors of protein-protein interactions represent a novel promising class of drugs that allow disassembly of oncogenic multiprotein complexes. Summary An improved understanding of disease-specific epigenetic vulnerabilities has led to the development of second-generation mechanism-based epigenetic drugs against myeloid neoplasms. Many of these drugs have been introduced into clinical trials and synergistic drug combination regimens have been shown to enhance efficacy and potentially prevent drug resistance.
    Type of Medium: Online Resource
    ISSN: 1065-6251 , 1531-7048
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2021
    detail.hit.zdb_id: 2026995-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages