Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 130, No. 16 ( 2017-10-19), p. 1809-1818
    Abstract: In Cebpb−/− mice, the number of Ly6C− monocytes was specifically decreased in a cell-intrinsic manner due to their accelerated death. C/EBPβ supports the survival of Ly6C− monocytes, at least in part through direct upregulation of Csf1r.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2017
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society of Hematology ; 2018
    In:  Blood Vol. 132, No. Supplement 1 ( 2018-11-29), p. 2393-2393
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 2393-2393
    Abstract: Accumulating evidence has suggested that low body temperature is associated with the risk of infection. Unintentional drops in the body temperature known as "accidental hypothermia" are occasionally accompanied with infections. Patients under therapeutic hypothermia for post-cardiac arrest care are also susceptible to infections. In addition, secondary hypothermia caused by severe sepsis is significantly associated with higher mortality. These observations suggest the negative impact of hypothermia on host defense. Neutrophils are continuously produced in the bone marrow (BM) and supplied to the peripheral blood (PB) or tissues, where they fight against microorganisms. In addition to the neutrophil functions, sufficient supply of neutrophils is a critical determinant of host defense. However, little is known about the impact of hypothermia on granulopoiesis, the process of neutrophil production in the BM. In this study, we investigated the changes in granulopoiesis under hypothermic conditions. We first analyzed the neutrophils in the PB of mice exposed to low environmental temperature (4 °C). Under this condition, rectal temperature of the mice significantly declined from 36.7±0.4 °C to 35.5±0.4 °C. After 72-hour exposure to the low environmental temperature, PB neutrophil counts were significantly decreased. In order to understand the reason for the decrease, we analyzed their BMs by flow cytometry. Previously we developed a unique strategy to divide cells undergoing granulopoiesis into 5 subpopulations based on the expression of c-kit and Ly6G, which reflect successive differentiation/maturation from #1 (c-kithi Ly6G-) to #5 (c-kit- Ly6Ghi) (Satake S and Hirai H et al. J Immunol, 2012). In BM cells of the mice exposed to the low environmental temperature, a significant decrease in mature neutrophils (#5) and a significant increase in cellular intermediates (#3 and #4) were observed, while total BM cell numbers were unchanged. In order to clarify whether these changes were cell-intrinsic or -extrinsic, total BM cells were cultured in vitro at either 35 °C or 37 °C in the presence of G-CSF. Flow cytometric analysis of these cultured BM cells at 72 hours revealed the increase in the intermediates (#2 to #4) and a decrease in the mature subpopulation (#5), suggesting that these alterations were cell-intrinsic phenomena. When neutrophil precursors (#1 or #2) were purified by cell sorter and subjected to in vitro culture at 35 °C for 48 hours, the number of resultant mature neutrophils (#5) were significantly less than those induced at 37 °C. These results clearly indicate that hypothermia delayed neutrophil differentiation/maturation. Interestingly, mice with sepsis induced by cecal ligation and puncture (CLP) accompanied with lower body temperature revealed significantly fewer PB granulocytes and shorter survival when compared to those mice which maintained normal body temperature after CLP. In order to understand the molecular mechanisms underlying the differentiation/maturation delay induced by hypothermia, we performed RNA sequencing of purified neutrophil precursors (#2) after 24-hour culture either at 35 °C or 37 °C. Interestingly, we found alterations in amino acid metabolic pathways and target genes of C/EBP, which is the transcription factor family required for granulopoiesis and cellular metabolism. Collectively, these results indicate hypothermia causes neutropenia through delayed neutrophil differentiation/maturation. We are currently analyzing metabolic changes to understand more precise molecular mechanisms by which hypothermia regulates granulopoiesis. This study will facilitate the understanding of host defense at low body temperature, and shed novel insight into the management of hypothermia in patients. Disclosures Kashiwagi: Takara Bio Inc.: Employment. Hirai:Kyowa Hakko Kirin: Research Funding; Novartis Pharma: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 209, No. 3 ( 2022-08-01), p. 498-509
    Abstract: The mononuclear phagocyte system (MPS), composed of monocytes/macrophages and dendritic cells (DCs), plays a critical role at the interface of the innate and adaptive immune systems. However, the simplicity of MPS has been challenged recently by discoveries of novel cellular components. In the current study, we identified the CD135+ subset of monocytes as a novel class of APCs in mice. CD135+ monocytes were readily found in the bone marrow, spleen, and peripheral blood at steady state, and they expressed markers specific to DCs, including MHC class II and CD209a, along with markers for monocytes/macrophages. In addition, this subset phagocytosed bacteria and activated naive T lymphocytes, fulfilling the criteria for APCs. CD135+ monocytes were derived directly from macrophage DC progenitors, not from common monocyte progenitors or other monocytes, suggesting that these are distinct from conventional monocytes. These findings facilitate our understanding of the MPS network that regulates immune responses for host defense.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2022
    detail.hit.zdb_id: 1475085-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 1325-1325
    Abstract: Monopoiesis is the process in which hematopoietic stem cells (HSCs) continuously give rise to monocytes. Accumulating evidence has identified cellular constituents of monopoiesis. Common myeloid progenitors (CMPs), granulocyte-macrophage progenitors (GMPs), macrophage-dendritic cell precursors (MDPs) and common monocyte progenitors (cMoPs) are the intermediates during the differentiation of HSCs into mature monocytes. In mice, CD11b+ CD115+ monocytes are further divided into two subsets based on the expression of Ly6C. Classical monocytes express Ly6C on their surface. By contrast, Ly6C− patrolling monocytes have been recently identified, and the molecular mechanisms which regulate the development and homeostasis of Ly6C−monocytes still remain elusive. C/EBPβ is a leucine zipper transcription factor which regulates stress-induced granulopoiesis (Hirai et al. Nat Immunol, 2006, Hayashi et al. Leukemia 2013). We have recently found that peripheral blood (PB) monocytes are significantly reduced in steady-state Cebpb−/− mice (Tamura et al. Biochem Biophys Res Commun, 2015). In addition, last year at this meeting, we have reported that cell death of Ly6C− monocytes was accelerated through reduced expression of Csf1r (encoding a receptor for M-CSF) in Cebpb−/− mice. Here in this study, we determined the precise developmental stage where C/EBPβ is mandatory for survival of Ly6C− monocytes, and investigated the mechanism of Csf1r regulation by C/EBPβ. A recent publication demonstrated that Mx1 is preferentially expressed by monocytes and a Mx1 promoter-mediated conditional system targets monocytes without inoculation of polyI:C (Hashimoto et al. Immunity, 2013), suggesting that Mx1-Cre Cebpbf/f mouse is ideal to evaluate the monocyte-specific requirement for C/EBPβ. We confirmed that upregulation of Cebpb mRNA during monopoiesis was significantly impaired after cMoP stage in Mx1-Cre+Cebpbf/f mice. In order to exclude the possible involvement of Cebpβ deficient microenvironment, bone marrow (BM) cells of Mx1-Cre+Cebpβf/f mice (CD45.2+) were transplanted into lethally irradiated CD45.1+ wild type mice. The frequencies of Ly6C− monocytes in the recipients of Mx1-Cre+Cebpbf/f BM cells were significantly reduced when compared to mice that received Mx1-Cre−Cebpbf/f BM cells (Figure). These results strongly suggest that C/EBPβ is specifically required after commitment to monocytes. In order to investigate the molecular mechanisms involved in the regulation of Csf1r by C/EBPβ, we utilized a combination of a promoter and an enhancer region located in the first intron of Csf1r gene (Fms intronic regulatory element: FIRE) for reporter assay (Pridans et al. Mol Ther Methods Clin Dev, 2014). These regulatory elements contain at least 2 consensus binding sites for C/EBPβ (one in the promoter and the other in the enhancer). C/EBPβ significantly enhanced the reporter activity of the regulatory elements in a dose-dependent manner, and introduction of mutations into either of the consensus binding sites abrogated the reporter activity. Next, we engineered EML cells, a mouse HSC line, to express C/EBPβ-estrogen receptor (ER) fusion protein or ER alone. Nuclear translocation of C/EBPβ-ER in the presence of tamoxifen resulted in significant increase of Csf1r mRNA and protein. Using these cells, we performed chromatin immunoprecipitation PCR. Upon treatment with tamoxifen, significant enrichment of C/EBPβ at the promoter region and the FIRE region was observed. These data indicated that C/EBPβ regulates Csf1r through direct binding to these regulatory elements. Collectively, these results demonstrate that C/EBPβ supports survival of Ly6C− monocytes after commitment to monocyte lineage through direct regulation of Csf1r, which is critical for survival and differentiation of monocytes. Figure Figure. Disclosures Hirai: Kyowa Hakko Kirin: Research Funding; Novartis Pharma: Research Funding. Maekawa:Bristol-Myers K.K.: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 114, No. 22 ( 2009-11-20), p. 1457-1457
    Abstract: Abstract 1457 Poster Board I-480 Mobilization of sufficient numbers of granulocytes to the front line of infection is prerequisite for host defense. As granulocytes have a short half-life, the production of granulocytes in the bone marrow must be tightly regulated to meet emergency demands. Our previous findings suggested that granulopoiesis at steady state is largely dependent on CCAAT enhancer binding protein α (C/EBPα) transcription factor (Zhang D.E. et al., PNAS, 1996 and Zhang P. et al., Immunity, 2004), whereas the granulopoiesis during emergency such as infections is dependent upon C/EBPβ (Hirai H. et al., Nat Immunology, 2006). Indeed the transcripts of C/EBPβ in granulocyte precursors were upregulated in response to cytokine stimulation or infection. In order to elucidate the molecular switch between C/EBPα- and C/EBPβ-dependent granulopoiesis, we developed a novel lentivirus-based reporter system. The vector carries two independent expression units, a green fluorescent protein (GFP) driven by a promoter of interest and a mouse Thy1.1 gene under the control of a constitutively active phosphoglycerate kinase (PGK) promoter. The activity of a promoter can be monitored by the intensity of GFP in Thy1.1 positive cells. Using this system, the activity of the C/EBPβpromoter was evaluated in primary bone marrow cells. A series of deletion mutants of the promoter revealed the existence of two cyclic AMP responsive elements (CRE) in the positive responsive elements during GM-CSF induced differentiation. The transcripts of CRE binding (CREB) protein were detected at higher level in hematopoietic stem cells and common myeloid progenitors than other mature cells. When a dominant negative mutant of CREB (S133A), in which the serine residue at 133aa was mutated to alanine, was retrovirally transduced into bone marrow cells, the mRNA of C/EBPβ was reduced and the proliferation/differentiation of granulocyte precursors were significantly impaired. In contrast, a constitutively active form of CREB, CREBDIEDML, facilitated the transcription of C/EBPβ. In addition, CREB is phosphorylated and bound to the CRE in response to GM-CSF stimulation. These data suggest that CREB is involved in the regulation of granulopoiesis through upregulation of C/EBPβ. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society of Hematology ; 2019
    In:  Blood Vol. 134, No. Supplement_1 ( 2019-11-13), p. 3713-3713
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 3713-3713
    Abstract: Under stress or regenerative conditions, HSCs rapidly enter into cell cycle and are reprogrammed toward myeloid-biased hematopoiesis to meet the increasing demand of myeloid cells. We have previously shown that the transcription factor C/EBPβ plays critical roles at the level of HSPCs under stress conditions (Nat Immunol 2006, J Immunol 2012, Leukemia 2013 and Blood Adv 2019). However, underlying molecular mechanisms of action remain largely unknown. In this study, we have investigated the detailed function of C/EBPβ in regulation of HSPCs. We first evaluated the impact of C/EBPβ on the cell cycle status of LT-HSCs. To exclude the cell-extrinsic contribution of C/EBPβ, CD45.2+ BM cells from WT or Cebpb-/- mice were transplanted into lethally irradiated CD45.1+ WT mice, and these "BM-replaced" recipients were subjected to the following experiments. At steady state, the cell cycle statuses and the numbers of HSPCs did not significantly differ between the recipients of WT cells and those of Cebpb-/- cells. Immediately after 5-FU treatment, WT LT-HSCs entered the cell cycle, as revealed by the decreased percentage of cells in G0 phase and the increased percentage of cells in S/G2M phase. All these parameters of cell cycle acceleration were observed prior to the nadir of LT-HSCs induced by 5-FU and were significantly attenuated in Cebpb-/- LT-HSCs. Next, we assessed the numbers of LT-HSCs, KSL cells, and KL cells after 5-FU treatment. Following the nadir, the recovery of LT-HSCs preceded that of KSL and KL cells, suggesting the differentiation of LT-HSCs to KSL and KL cells. In the recipients of Cebpb-/- cells, the recovery of KSL and KL cells was delayed significantly. Collectively, cell cycle acceleration and subsequent differentiation of LT-HSCs under stress conditions were impaired in the absence of Cebpb. The Cebpb is a single exon gene, and three isoforms, namely, LAP*, LAP and LIP which lacks N-terminus, are translated from its unique mRNA. Due to their structural difference, they should have distinct functions. Here, we focused on expression and functions of these isoforms in regenerating HSPCs. To monitor expression of these isoforms in small numbers of HSCs, we devised a novel intracellular double staining method for flow cytometric analysis using two distinct anti-C/EBPβ antibodies. An antibody against the C-terminus of C/EBPβ recognized all three isoforms, while an antibody against the N-terminus of C/EBPβ only recognized LAP* and LAP. Thus, simultaneous staining with both antibodies should enable us to distinguish cells that dominantly expressed LIP (C-term+ N-term-) from those that expressed all three isoforms (C-term+ N-term+). Using this method, we monitored the expression patterns of these isoforms in LT-HSCs after 5-FU treatment. LT-HSCs initially became C-term single positive in response to 5-FU and subsequently changed to C- and N-term double positive, suggesting that LIP was upregulated prior to LAP/LAP* under stress conditions. These results suggest that phase-specific upregulation of LIP and LAP/LAP* is strongly associated with phase-specific functions of C/EBPβ in cell cycle activation and differentiation, respectively. Indeed, when EML cells, a mouse HSC line, were retrovirally transduced with LIP, the transduced cells were more proliferative and actively cycling than those transduced with the control vector, whereas proliferation and cell cycle were markedly suppressed in LAP*- and LAP-expressing EML cells. LIP-expressing cells remained undifferentiated, while LAP*- and LAP-expressing cells rapidly differentiated into CD11b+ myeloid cells and eventually stopped proliferating. In summary, our findings clearly suggest that sequential upregulation of C/EBPβ isoforms is critical for the regulation of HSCs under stress conditions. LIP amplifies the "reservoir" of HSPCs by accelerating the proliferation of HSCs during the early phase of regeneration, while LAP*/LAP induce their myeloid differentiation at a later phase. These findings should facilitate our understanding of the pathophysiology of infection, inflammation, and regenerating hematopoiesis in response to myeloablative chemotherapies or hematopoietic stem cell transplantation, all of which increase the hematopoietic demands. Disclosures Hirai: Kyowa Kirin: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Elsevier BV ; 2010
    In:  Biochemical and Biophysical Research Communications Vol. 393, No. 3 ( 2010-03), p. 498-503
    In: Biochemical and Biophysical Research Communications, Elsevier BV, Vol. 393, No. 3 ( 2010-03), p. 498-503
    Type of Medium: Online Resource
    ISSN: 0006-291X
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2010
    detail.hit.zdb_id: 1461396-7
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: PLoS ONE, Public Library of Science (PLoS), Vol. 8, No. 1 ( 2013-1-30), p. e54862-
    Type of Medium: Online Resource
    ISSN: 1932-6203
    Language: English
    Publisher: Public Library of Science (PLoS)
    Publication Date: 2013
    detail.hit.zdb_id: 2267670-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood Advances, American Society of Hematology, Vol. 3, No. 3 ( 2019-02-12), p. 476-488
    Abstract: Even in the era of ABL tyrosine kinase inhibitors, eradication of chronic myeloid leukemia (CML) stem cells is necessary for complete cure of the disease. Interferon-α (IFN-α) has long been used for the treatment of chronic-phase CML, but its mechanisms of action against CML stem cells remain unclear. We found that IFN-α upregulated CCAAT/enhancer binding protein β (C/EBPβ) in BCR-ABL–expressing mouse cells by activating STAT1 and STAT5, which were recruited to a newly identified 3′ distal enhancer of Cebpb that contains tandemly aligned IFN-γ–activated site elements. Suppression or deletion of the IFN-γ–activated site elements abrogated IFN-α–dependent upregulation of C/EBPβ. IFN-α induced differentiation and exhaustion of CML stem cells, both in vitro and in vivo, in a C/EBPβ-dependent manner. In addition, IFN-α upregulated C/EBPβ and induced exhaustion of lineage− CD34+ cells from CML patients. Collectively, these results clearly indicate that C/EBPβ is a critical mediator of IFN-α–induced differentiation and exhaustion of CML stem cells.
    Type of Medium: Online Resource
    ISSN: 2473-9529 , 2473-9537
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 2876449-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Society of Hematology ; 2020
    In:  Blood Advances Vol. 4, No. 14 ( 2020-07-28), p. 3343-3356
    In: Blood Advances, American Society of Hematology, Vol. 4, No. 14 ( 2020-07-28), p. 3343-3356
    Abstract: The transcription factor CCAAT enhancer-binding protein β (C/EBPβ) is required for stress-induced granulopoiesis at the level of hematopoietic stem/progenitor cells (HSPCs); however, its role and mechanisms of action in HSPCs are unknown. In this study, we assessed the regulation and functions of C/EBPβ in HSPCs, especially under stress conditions. After 5-fluorouracil treatment or bone marrow transplantation, Cebpb−/− HSPCs exhibited impaired cell-cycle activation and myeloid differentiation at the early and late phases of regeneration, respectively, whereas at steady state, Cebpb deficiency did not affect HSPCs. C/EBPβ was upregulated in response to hematopoietic stress, especially in CD150high long term-hematopoietic stem cells (LT-HSCs). Intracellular flow cytometric analysis that detected distinct domains of C/EBPβ revealed that, among the 3 isoforms of C/EBPβ, liver-enriched inhibitory protein (LIP) was upregulated in LT-HSCs prior to liver-enriched activating protein (LAP)/LAP* during regeneration. Early upregulation of LIP promoted cell-cycle entry of LT-HSCs by positively regulating Myc and expanded the HSPCs pool. Subsequent myeloid differentiation of amplified HSPCs was mediated by LAP/LAP*, which were upregulated at a later phase of regeneration. Collectively, our findings show that stress-induced sequential upregulation of C/EBPβ isoforms is critical for fine-tuning the proliferation and differentiation of regenerating HSPCs.
    Type of Medium: Online Resource
    ISSN: 2473-9529 , 2473-9537
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 2876449-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages