In:
AIP Advances, AIP Publishing, Vol. 9, No. 9 ( 2019-09-01)
Abstract:
Additive manufacturing (AM) has created the possibility of replacing traditional manufacturing techniques with faster, versatile, and cost-effective production options. In this study, we employed AM techniques to fabricate silicon carbide (SiC) radiation detectors based on commercial 4H-SiC wafers. Platinum (Pt) nanoparticle inks were synthesized and printed onto the surface of a 4H-SiC wafer using an aerosol jet printing technique to create Schottky diodes for radiation detection. The additive printed detectors were characterized for surface morphology through a scanning electron microscope (SEM) and atomic force microscope (AFM), and electronically by current-voltage (IV), capacitance-voltage (CV), and finally by alpha spectroscopy measurements. The printed detector achieved an energy resolution of 3.24% FWHM at 5.486 MeV, compared to 0.62% FWHM of a SiC detector fabricated by conventional cleanroom technologies and 0.3% FWHM of a commercially available Si detector.
Type of Medium:
Online Resource
ISSN:
2158-3226
Language:
English
Publisher:
AIP Publishing
Publication Date:
2019
detail.hit.zdb_id:
2583909-3
Bookmarklink