In:
Reproductive Sciences, Springer Science and Business Media LLC, Vol. 29, No. 11 ( 2022-11), p. 3212-3221
Abstract:
Decidualization of the endometrial stromal cells (ESCs) is essential for successful embryo implantation. It involves the transformation of fibroblastic cells into epithelial-like cells that secrete cytokines, growth factors, and proteins necessary for implantation. Previous studies have revealed altered expression of miR-375 in the endometrium of patients with recurrent implantation failure and the ectopic stromal cells of patients with endometriosis. However, the exact molecular mechanisms, particularly the role of microRNAs (miRNAs) in the regulation of decidualization, remain elusive. In this study, we investigated whether decidualization is affected by miR-375 and its potential target(s). The findings demonstrated the downregulation of the expression of miR-375 in the secretory phase compared to its expression in the proliferative phase of the endometrium in normal donors. In contrast, it was upregulated in the secretory phase of the endometrium in infertility patients. Furthermore, during decidualization of ESCs in vitro, overexpression of miR-375 significantly reduced the transcript-level expression of forkhead box protein O1 ( FOXO1 ), prolactin ( PRL ), and insulin-like growth factor binding protein-1 ( IGFBP1 ), the well-known decidual cell markers. Overexpression of miR-375 also resulted in reduced decidualization-derived intracellular and mitochondrial reactive oxygen species (ROS) levels. Using the luciferase assay, we confirmed that NADPH oxidase 4 ( NOX4 ) is a direct target of miR-375. Collectively, the study showed that the miR-375-mediated NOX4 downregulation reduced ROS production and attenuated the decidualization of ESCs. It provides evidence that miR-375 is a negative regulator of decidualization and could serve as a potential target for combating infertility.
Type of Medium:
Online Resource
ISSN:
1933-7191
,
1933-7205
DOI:
10.1007/s43032-022-00854-w
Language:
English
Publisher:
Springer Science and Business Media LLC
Publication Date:
2022
detail.hit.zdb_id:
2266096-3
Bookmarklink