Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 992-992
    Abstract: Background: The development of neuroendocrine prostate cancer (NEPC) is one mechanism of treatment resistance to androgen receptor (AR)-targeted therapies for a subset of patients with advanced prostate cancer. This is associated with transition from a prostate adenocarcinoma to small cell/NEPC histology, low AR signaling signaling, and expression of neuroendocrine markers as Chromogranin A (CGHA), Synaphophysin (SYP) and CD56). Patient derived preclinical models recapitulating the NEPC phenotype may be used to address NEPC pathogenesis and test emerging therapeutic targets. Methods: Tumor organoids were developed according to protocols previously described (Gao et al, Cell 2015). Briefly the tissue biopsies (liver and bone biopsy) were washed, enzymatically digested and then seeded in Matrigel (BD) droplets. Organoids were characterized at genomic (WES), RNA and protein level (IHC) to confirm the expression of specific markers. Lentiviral infections were performed using shRNAs against EZH2 to knock down EZH2 in organoids. Organoids were also subcutaneously injected in NSG mice to generate patient derived xenografts (PDXs) for drug treatment in vivo. Results: We developed and characterized two NEPC tumor organoids from tumor biopsies (liver and bone) of two patients both in vitro and in vivo (as PDXs). NEPC tumor organoid models retained the molecular and histological characteristic of their matched patient samples. We successfully manipulated the activity of the histone methyltransferase EZH2 by using a catalytic inhibitor and its expression by infecting organoids with shEZH2. We showed that the absence of EZH2 affects the expression of neuroendocrine-associated programs as stem cell and neuronal pathway. Moreover treatment with EZH2 inhibitor decreased tumor organoids viability and PDXs tumor volume. Drug screening approaches on NEPC organoids were used to discovery novel drug targets and combinations that could potentially benefit NEPC patients. Top single agent hits included previously identified targets such as EZH2, AURKA, as well as novel synergies. Conclusions NEPC patient tumor organoids are clinically relevant tumor models to study the NEPC phenotype in advanced prostate cancer and may be used to elucidate novel drug targets. Citation Format: Loredana Puca, Rohan Bareja, Reid Shaw, Wouter Karthaus, Dong Gao, Chantal Pauli, Juan Miguel Mosquera, Joanna Cyrta, Rachele Rosati, Rema Rao, Andrea Sboner, Carla Grandori, Giorgio Inghirami, Yu Chen, Mark A. Rubin, Himisha Beltran. Patient-derived tumor organoids of neuroendocrine prostate cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 992. doi:10.1158/1538-7445.AM2017-992
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 14_Supplement ( 2016-07-15), p. 3098-3098
    Abstract: Background Neuroendocrine prostate cancer (NEPC) is a highly aggressive subtype of prostate cancer that may either arise de novo or much more commonly after hormonal therapy for prostate adenocarcinoma. Patients diagnosed with NEPC are often treated with platinum chemotherapy able to produce only short duration responses underling the urgent need of identifying novel potential therapeutic targets for this lethal disease. In the context of our Englander Institute for Precision Medicine we developed patient derived 3D NEPC tumor organoids and patient derived PDXs to test specific inhibitors on molecular targets identified by genomic analysis of native tumors. Emerging data from an integrative molecular analysis of metastatic tumors from a large cohort of castration resistant prostate cancer (CRPC) patients, including NEPC, points to a key role of the Polycomb gene EZH2 and the epigenome in the pathogenesis of NEPC. Methods Tumor organoids were developed according to protocols developed by our Englander Institute for Precision Medicine and other Institutes. Briefly the tissue biopsies (liver and bone biopsy) were washed, enzymatically digested and then seeded in a Matrigel (BD) droplet. Organoids were then characterized at both genomic (WES) and protein level (IHC) to confirm the expression of specific markers. Organoids were also subcutaneously injected in NSG mice to generate PDX for drug treatment in vivo. Results Based on the significant EZH2 overexpression in NEPC tumors by RNA-Seq and tissue microarray, we checked the expression of EZH2 and H3K273M, the readout of its activity, in NEPC organoids and we found out that both EZH2 and H3K273M were high expressed in NEPC organoids. Therefore we evaluated the effects of the EZH2 inhibitor, GSK343, in NEPC versus CRPC organoids and in the castration resistant line DU145 versus the NEPC cell line NCI-H660. We found out that GSK343 effectively inhibited H3K27me3 and resulted in a significant reduction of NEPC organoids and H660 viability while DU145 as well as CRPC organoids were insensitive to the drug. We extended our studies generating PDXs by subcutaneously injecting NEPC tumor organoids in NSG mouse. The tumor extracted from the PDXs showed a high proliferative phenotype with molecular features characteristic of NEPC as chromogranin A expression and no androgen receptor expression. NEPC PDXs were treated with the EZH2 inhibitor, GSK126, and we observed a significant reduction of tumor size along with the treatment suggesting that EZH2 is a potential therapeutic target for this highly aggressive disease. Conclusions In the Englander Institute for Precision Medicine we are generating NEPC patient tumor organoids and PDXs to unveil new targets to facilitate therapeutic decision at this late stage disease. Among the possible hits, EZH2 represents a promising drug target and a potential modulator of the NEPC phenotype. Citation Format: Loredana Puca, Wouter R. Karthaus, Dong Gao, John Wongvipat, Andrea Sboner, Marcello Gaudiano, Chantal Pauli, Rema A. Rao, Juan Miguel Mosquera, Joanna Cyrta, Theresa Y. MacDonald, Giorgio Ga Inghirami, Yu Chen, Mark A. Rubin, Himisha Beltran. Epigenetic therapy to target neuroendocrine prostate cancer using precision medicine models. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 3098.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 1594-1594
    Abstract: The inherent plasticity of tumor cells provides a mechanism of resistance to many molecularly targeted therapies, exemplified by adeno-to-neuroendocrine lineage transitions seen in prostate and lung cancer. Here we investigate the root cause of this lineage plasticity in a primary murine prostate organoid model that mirrors the lineage transition seen in patients. These cells lose luminal identity within weeks following deletion of Trp53 and Rb1, ultimately acquiring an Ar-negative, Syp+ phenotype after orthotopic in vivo transplantation. We performed single-cell transcriptomic analysis of a time-course experiment on the prostate organoid following Trp53 and Rb1 deletion. Critical to this study, we developed SEACells, a method that enumerates distinct, highly granular cell states, allowing for robust transcriptomic quantification. Leveraging the SEACell platform, we developed several graph-based computational approaches based on Markov absorption, diffusion maps, and attributed stochastic block models to quantify dynamic changes in plasticity. These quantitative models independently confirmed rapid collapse of cell-type fidelity in the form of a mixed luminal-basal phenotype following tumor suppressor gene deletion. These methods compute metrics for plasticity that we correlated to candidate driver gene programs. Among the strongest plasticity correlates, Jak-Stat and Fgfr signaling stood out as gene programs activated early in the time-course prior to any corresponding morphological changes. We further developed a regression-based approach to nominate ligand-receptor interactions that activate downstream Jak-Stat signaling, which identified Fgf-Fgfr interactions that were functionally validated with growth factor addition and pharmacological inhibition. Most strikingly, genetic or pharmacologic inhibition of Jak1/2 in combination with Fgfr blockade not only reversed the plastic state and restored organoids to their wild-type morphology, but also re-sensitized drug-resistant cells to antiandrogen therapy in models with residual AR expression. We additionally confirm early activation of Jak/Stat transcriptional programs in an Rb1/Trp53/Pten-deleted genetically engineered mouse model undergoing substantial cell-type diversification under plasticity in the context of the tumor microenvironment. Collectively, we show that lineage plasticity initiates quickly as a largely cell-autonomous process that is further increased in the in vivo setting, and through newly developed computational approaches, we identify a pharmacological strategy that restores lineage identity using clinical grade inhibitors. Citation Format: Joseph M. Chan, Wouter R. Karthaus, Manu Setty, Jillian R. Love, Samir Zaidi, Jimmy Zhao, Zi-ning Choo, Sitara Persad, Justin LaClair, Kayla E. Lawrence, Ojasvi Chaudhary, Ignas Masilionis, Linas Mazutis, Ronan Chaligne, Dana Pe'er, Charles Sawyers. Reversal of lineage plasticity in RB1/TP53-deleted prostate cancer through FGFR and Janus kinase inhibition [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 1594.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 3439-3439
    Abstract: FOXA1 is an evolutionary conserved pioneer factor that binds to condensed chromatin allowing the recruitment of other transcription factors to the DNA. Although mutations in FOXA1 are a hallmark of estrogen receptor-positive (ER+) breast cancers, it is currently unknown whether and how these mutations affect breast cancer development and response to endocrine therapies. In this work, we studied how the genome-wide chromatin recruitment, accessibility and transcriptional outcomes of recurrent FOXA1 mutations can affect therapeutic response in ER+ breast cancer. By examining the landscape of FOXA1 mutations in a cohort of 4,952 breast cancer patients, we identified several hotspot mutations, some of them present also in other malignancies and some others specific to breast cancer. In particular, we characterized three mutations in the Wing2 region and a breast-cancer specific third β strand mutation, namely SY242CS. We also showed that FOXA1 mutations are enriched in metastatic tumors and mutually exclusive with ESR1 mutations, well-known drivers of resistance to endocrine therapy. Using a clinico-genomicaly curated cohort of patients, together with in vitro and in vivo breast models, we associated FOXA1 missense mutations with a lower response to endocrine therapy. Mechanistically, by means of ChIP-seq, ATAC-seq and RNA-seq analyses, we found that FOXA1 mutations in the Wing2 loop display increased chromatin binding affinity at ER loci upon estrogen stimulation, and an enhanced ER-mediated transcription without changes in chromatin accessibility, decoupling FOXA1 Wing2 mutant binding from their pioneering function. These data correlated with the highly organized 3D conformation conferred by FOXA1 Wing2 mutations we predicted by structural modeling. Thus. the enhanced chromatin binding affinity gained by FOXA1 Wing2 mutations might be a mechanism to sustain active estrogen response even in the presence of therapeutic pressure. In contrast, breast specific SY242CS mutant shows neomorphic properties including the ability to open novel chromatin regions, and activate an alternative cistrome and transcriptome. Using an engineered luciferase reporter system, we validated that a non-canonical motif, shared by both gained accessibility and binding sites, is SY242CS-specific. Structural modeling of the binding of WT or SY242CS FOXA1 to this new motif revealed that SY242CS undergoes conformational change that results in a tight interaction with the new DNA motif, not observed in WT FOXA1. Taken together, our findings provide mechanistic insights into how FOXA1 mutations modulate its function in breast cancer to dictate malignant progression and response to endocrine therapy. More broadly, these results position FOXA1 mutations as potential biomarkers of response and potential targets for the treatment of metastatic ER+ breast cancer. Citation Format: Amaia Arruabarrena-Aristorena, Jesper LV Maag, Srushti Kittane, Yanyan Cai, Jane Park, Pedram Razavi, Lorenzo Ferrando, Pier Selenica, Wouter R. Karthaus, Srinivasaraghavan Kannan, Emiliano Cocco, Sik Y. Ho, Daisylyn Senna Tan, Mirna Sallaku, Charles L. Sawyers, Jorge S. Reis-Fihlo, Chandra S. Verma, Ralf Jauch, Richard Koche, José Baselga, Eneda Toska, Maurizio Scaltriti. FOXA1 mutations reveal distinct chromatin profiles and influence therapeutic response in breast cancer [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 3439.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2016
    In:  Cancer Research Vol. 76, No. 14_Supplement ( 2016-07-15), p. LB-276-LB-276
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 14_Supplement ( 2016-07-15), p. LB-276-LB-276
    Abstract: Primary prostate cancer is typically of luminal phenotype. However, little is known about the stem/progenitor properties of transformed luminal tumor cells as they fail to survive in culture. Using the organoid culture methodology, we show two distinct luminal progenitors in aggressive Pten/Tp53-null mouse model of prostate cancer. Not only did tumors contain previously described multipotent progenitors, but also a major population of committed luminal progenitors. The distinction between committed luminal and multipotent organoids was also evident in subcutaneous grafts as tumors of adenocarcinoma or multilineage histological phenotypes were observed, respectively. Moreover, using organoids we show that the self-renewing capacity of luminal-committed progenitors is a tumor-specific property, absent in benign luminal cells. Further, a significant fraction of luminal progenitors displayed resistance to in vivo castration as well as to androgen receptor inhibition ex vivo. Importantly, 3D organoid techniques have allowed us to relate our findings in humans as we can successfully grow similar luminal tumor populations from patient derived xenografts (PDXs) models of prostate cancer. In all, these data reveal two distinct luminal tumorigenic populations in mouse models of prostate cancer, providing insight into luminal tumor initiating cells in prostate cancer that can also influence response to therapy. Citation Format: Supreet Agarwal, Paul Hynes, Ross Lake, Lei Fang, Heather Tillman, Mike Beshiri, Keith Jansson, Wouter Karthaus, Philip Iaquinta, Charles Sawyers, Kathleen Kelly. The identification and characterization of prostate adenocarcinoma tumor initiating cells. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr LB-276.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 32, No. 4_suppl ( 2014-02-01), p. 33-33
    Abstract: 33 Background: The inability to propagate patient-derived prostate cancer cells in vitro is a major impediment in the mechanistic understanding of tumorigenesis and therapeutic response. In order to generate accurate in vitro models that represent the diversity of in situ prostate cancer, we have developed a three-dimensional “organoid” system to culture metastasis samples and integrated it into our precision medicine workflow of attaining and characterizing pre-treatment biopsies. Methods: Biopsy samples of prostate cancer metastases, both soft tissue and bone, acquired at the time of therapeutic or diagnostic interventions following informed consent and institutional review board approval were obtained from two institutions. Samples were digested in Type II Collagenase (Gibco) and re-suspended in growth factor reduced Matrigel (BD), plated on plastic, and overlaid with prostate culture media (PCM). PCM consists of serum free Advanced DMEM/F12 (Gibco) with multiple growth factors optimized to propagate benign primary prostate cells. Cultures were maintained at 37°C in 5% CO2. Results: In the initial 51 samples, 15 continuous organoid cultures (29%) were established from distinct sites (9 of 32 bone, 6 of 19 soft). Tumor content of the biopsy represents a major determinant of organoid growth. Once established, organoids propagate indefinitely with different kinetics (approximately 48 hours to 1 week doubling time), and can be cryopreserved. Histological analysis shows that the organoids recapitulate the structure of the in situ cancer and genomic analysis using array CGH and whole-exome sequencing (WES) shows the presence of typical copy number alterations including TMPRSS2-ERG interstitial deletion, PTEN loss, CHD1 loss, and AR amplification. WES of two organoid/metastasis pairs shows that the growth conditions do not generate additional mutations. Conclusions: This novel tissue culture technique enables the development of new cell lines derived from metastatic deposits. This advance will facilitate research by availing new and varied cell lines, which will hopefully be more closely aligned to the spectrum of behavior of the clinical disease in comparison to the limited and problematic cell line models currently available.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2014
    detail.hit.zdb_id: 2005181-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    MyJove Corporation ; 2019
    In:  Journal of Visualized Experiments , No. 152 ( 2019-10-24)
    In: Journal of Visualized Experiments, MyJove Corporation, , No. 152 ( 2019-10-24)
    Type of Medium: Online Resource
    ISSN: 1940-087X
    Language: English
    Publisher: MyJove Corporation
    Publication Date: 2019
    detail.hit.zdb_id: 2259946-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MyJove Corporation ; 2019
    In:  Journal of Visualized Experiments , No. 152 ( 2019-10-24)
    In: Journal of Visualized Experiments, MyJove Corporation, , No. 152 ( 2019-10-24)
    Type of Medium: Online Resource
    ISSN: 1940-087X
    Language: English
    Publisher: MyJove Corporation
    Publication Date: 2019
    detail.hit.zdb_id: 2259946-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Nature Medicine, Springer Science and Business Media LLC, Vol. 25, No. 10 ( 2019-10), p. 1607-1614
    Type of Medium: Online Resource
    ISSN: 1078-8956 , 1546-170X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 1484517-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2019
    In:  JNCI: Journal of the National Cancer Institute Vol. 111, No. 3 ( 2019-03-01), p. 221-223
    In: JNCI: Journal of the National Cancer Institute, Oxford University Press (OUP), Vol. 111, No. 3 ( 2019-03-01), p. 221-223
    Type of Medium: Online Resource
    ISSN: 0027-8874 , 1460-2105
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2992-0
    detail.hit.zdb_id: 1465951-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages