Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Toxins, MDPI AG, Vol. 14, No. 2 ( 2022-02-09), p. 130-
    Abstract: While mycotoxins are generally regarded as food contamination issues, there is growing interest in mycotoxins as environmental pollutants. The main sources of trichothecene and zearalenone mycotoxins in the environment are mainly attributed to Fusarium infested fields, where mycotoxins can wash off in infested plants or harvest residues. Subsequently, mycotoxins inevitably enter the soil. In this context, investigations into the effects, fate, and transport are still needed. However, there is a lack of analytical methods used to determine Fusarium toxins in soil matrices. We aimed to validate an analytical method capable of determining the toxins nivalenol (NIV), deoxynivalenol (DON), 15-acetyl-deoxynivalenol (15-AcDON), and zearalenone (ZEN), at environmentally relevant concentrations, in five contrasting agricultural soils. Soils were spiked at three levels (3, 9 and 15 ng g−1), extracted by solid-liquid extraction assisted with ultrasonication, using a generic solvent composition of acetonitrile:water 84:16 (v:v) and measured by LC–HRMS. Method validation was successful for NIV, DON, and 15-AcDON with mean recoveries 〉 93% and RSDr 〈 10%. ZEN failed the validation criteria. The validated method was applied to eight conventionally managed maize field soils during harvest season, to provide a first insight into DON, NIV, and 15-AcDON levels. Mycotoxins were present in two out of eight sampled maize fields. Soil mycotoxin concentrations ranged from 0.53 to 19.4 ng g−1 and 0.8 to 2.2 ng g−1 for DON and NIV, respectively. Additionally, we found indication that “hot-spot” concentrations were restricted to small scales ( 〈 5 cm) with implications for field scale soil monitoring strategies.
    Type of Medium: Online Resource
    ISSN: 2072-6651
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2518395-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Global Change Biology, Wiley, Vol. 24, No. 2 ( 2018-02)
    Abstract: Ecosystem functions in streams (e.g., microbially mediated leaf litter breakdown) are threatened globally by the predicted agricultural intensification and its expansion into pristine areas, which is associated with increasing use of fertilizers and pesticides. However, the ecological consequences may depend on the disturbance history of microbial communities. To test this, we assessed the effects of fungicides and nutrients (four levels each) on the structural and functional resilience of leaf‐associated microbial communities with differing disturbance histories (pristine vs. previously disturbed) in a 2 × 4 × 4‐factorial design ( n  =   6) over 21 days. Microbial leaf breakdown was assessed as a functional variable, whereas structural changes were characterized by the fungal community composition, species richness, biomass, and other factors. Leaf breakdown by the pristine microbial community was reduced by up to 30% upon fungicide exposure compared with controls, whereas the previously disturbed microbial community increased leaf breakdown by up to 85%. This significant difference in the functional response increased in magnitude with increasing nutrient concentrations. A pollution‐induced community tolerance in the previously disturbed microbial community, which was dominated by a few species with high breakdown efficacies, may explain the maintained function under stress. Hence, the global pressure on pristine ecosystems by agricultural expansion is expected to cause a modification in the structure and function of heterotrophic microbial communities, with microbially mediated leaf litter breakdown likely becoming more stable over time as a consequence of fungal community adaptions.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2017
    In:  Journal of Soils and Sediments Vol. 17, No. 4 ( 2017-4), p. 1092-1100
    In: Journal of Soils and Sediments, Springer Science and Business Media LLC, Vol. 17, No. 4 ( 2017-4), p. 1092-1100
    Type of Medium: Online Resource
    ISSN: 1439-0108 , 1614-7480
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2125896-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Soil Systems, MDPI AG, Vol. 6, No. 1 ( 2022-02-17), p. 21-
    Abstract: This study aimed to evaluate changes in abundance, structure, and enzyme activity of the soil microbiome in response to 4 years of mulching using either black polyethylene plastic film (PM) or wheat straw (SM). Soil samples (depth 0–5 and 5–10 cm) were collected from conventional strawberry plots, in two samplings: 1 week prior (S1) and 7 weeks after straw application (S2). Selected soil properties were monitored in each system and the abundance and structure of microbial communities were characterized via phospholipid fatty acid (PLFA) analysis. The investigation of soil microbial functions included activities of the enzymes chitinase, leucine aminopeptidase, and acid phosphatase, as well as function genes involved in nitrogen transformation. Each mulch system resulted in distinct physicochemical properties. In particular, a pH value higher by one-unit under PM (7.6 ± 0.3) compared to SM (6.5 ± 0.3) was observed. Values for SOC, DOC, and total-N were 15%, 22%, and 16% higher in PM than in SM. The microbial biomass (total PLFAs) was 1.5-fold higher in SM compared to PM. The abundance of soil fungi (F) and bacteria (B) increased by 37% and 44% after straw incorporation compared to PM (S2). In particular, Gram-negative bacteria (gr–) increased by twofold in SM. Consequently, wider F:B and gr+:gr– ratios were observed in PM. According to the shifts in microbial abundance, the activity of the enzyme chitinase was lower by 27% in PM, while the activity of the acid phosphatase increased by 32%. Denitrification genes were not affected by the mulching systems. In conclusion, the abundance and structure of the investigated microbial groups and the enzyme activities were strongly influenced by the mulching system. In detail, effects on microbiota were primarily attributed to the altered soil pH and probably the input of degradable organic matter with straw mulching in SM. This resulted in higher abundance of soil microorganisms in SM, although measures within this cultivation system such as fungicide application may have exerted adverse effects on the microbiota.
    Type of Medium: Online Resource
    ISSN: 2571-8789
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2932897-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Soil Systems, MDPI AG, Vol. 5, No. 2 ( 2021-04-02), p. 24-
    Abstract: While mineral fertilization increases agricultural yields, it also bears the risk of contaminating non-target ecosystems and negatively affecting soil chemical parameters and microbial communities. This calls for alternative and more sustainable agricultural practices that reduce the use of fertilizers. Flood pulse irrigation could be an alternative to mineral fertilization of hay meadows, since it increases the yield with little or no application of fertilizer. However, the positive and negative implications of flood pulse irrigation on soil chemical parameters and particularly soil microbial communities are still largely unknown. In this study, we assessed shifts in soil microbial communities (SMC) as a response to changes in soil chemical parameters after flood pulse irrigation and/or fertilization of meadows. We determined soil chemical (Corg, Ntot, water extractable N, P, K, pH) and microbial (phospholipid-derived fatty acids, PLFA) parameters of 12 meadows in a 2 × 2 factorial design, comprising flood pulse irrigation and fertilization. Corg, Ntot, and water content as well as microbial biomass were higher in flood-irrigated than in non-flooded soils. Soil microbial biomass positively correlated with Corg, Ntot, and water extractable N. Gram-negative bacteria significantly increased, whereas the fungi/bacteria ratio significantly decreased in flood-irrigated soils compared to non-flooded soils. Arbuscular mycorrhizal fungi were positively correlated with soil pH. Flood pulse irrigation seemed to promote the build-up of a larger soil carbon and nitrogen pool as well as higher water content and microbial biomass. By this, it potentially mitigated negative mineral fertilization effects such as changed soil pH and reduced carbon use efficiency. We conclude that flood pulse irrigation may represent a sustainable alternative to mineral fertilization.
    Type of Medium: Online Resource
    ISSN: 2571-8789
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2932897-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages