Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 126, No. 21 ( 2015-11-19), p. 2415-2423
    Abstract: Factor V and protein S are required for sepsis mortality reduction and suppression of inflammatory gene expression by activated protein C. The R506Q mutation (Leiden mutation) abrogates the anti-inflammatory cofactor function of factor V for activated protein C.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society of Hematology ; 2005
    In:  Blood Vol. 106, No. 11 ( 2005-11-16), p. 26-26
    In: Blood, American Society of Hematology, Vol. 106, No. 11 ( 2005-11-16), p. 26-26
    Abstract: Recombinant activated protein C (APC) reduces mortality of patients with severe inflammatory disease associated with multi-organ failure. APC exerts anticoagulant, anti-inflammatory, and cytoprotective effects. The contribution of these distinct APC activities to the overall therapeutic efficacy in septic patients is unknown. The aim of the study is to delineate the mechanism underlying the protective effect of APC in mouse endotoxemia. We first establish an experimental mouse model to demonstrate that recombinant murine APC reduces 6 day mortality of mice subjected to LPS-induced endotoxemia. APC treatment did not alter the extent of inflammatory cytokine release. Recombinant human APC did not exhibit therapeutic efficacy in this model. In contrast, recombinant human and mouse APC reduced to a similar extent experimentally induced arterial thrombus formation. The therapeutic efficacy of wild type recombinant murine APC was abolished in genetically engineered mice with reduced expression of the endothelial protein C receptor (EPCR). Recombinant mutant murine APC with greatly reduced anticoagulant potency was as effective as wild type murine APC in reducing mortality of mice subjected to LPS-induced septicemia. Mice homozygous for the Leiden polymorphism in the factor V (fV) gene, which renders coagulation factor V partially resistant to the anticoagulant effect of APC secondary to blocked fV proteolysis at R504 (R506 in humans), were refractory to the therapeutic benefit conveyed by administration of recombinant wild type mouse APC. In summary, these findings provide evidence that the therapeutic efficacy of recombinant APC is predominantly based on the ability of APC to interact with the endothelial protein C receptor, and that the anticoagulant activity of APC is not sufficient for achieving protection against mortality in a mouse model of endotoxemia. On the other hand, cleavage of fV at R506 appears necessary for retaining therapeutic efficacy in carriers of the fV Leiden allele.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 125, No. 18 ( 2015-04-30), p. 2845-2854
    Abstract: Infection and inflammation are invariably associated with activation of the blood coagulation mechanism, secondary to the inflammation-induced expression of the coagulation initiator tissue factor (TF) on innate immune cells. By investigating the role of cell-surface receptors for coagulation factors in mouse endotoxemia, we found that the protein C receptor (ProcR; EPCR) was required for the normal in vivo and in vitro induction of lipopolysaccharide (LPS)-regulated gene expression. In cultured bone marrow–derived myeloid cells and in monocytic RAW264.7 cells, the LPS-induced expression of functionally active TF, assembly of the ternary TF-VIIa-Xa initiation complex of blood coagulation, and the EPCR-dependent activation of protease-activated receptor 2 (PAR2) by the ternary TF-VIIa-Xa complex were required for the normal LPS induction of messenger RNAs encoding the TLR3/4 signaling adaptor protein Pellino-1 and the transcription factor interferon regulatory factor 8. In response to in vivo challenge with LPS, mice lacking EPCR or PAR2 failed to fully initiate an interferon-regulated gene expression program that included the Irf8 target genes Lif, Iigp1, Gbp2, Gbp3, and Gbp6. The inflammation-induced expression of TF and crosstalk with EPCR, PAR2, and TLR4 therefore appear necessary for the normal evolution of interferon-regulated host responses.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: The Journal of Experimental Medicine, Rockefeller University Press, Vol. 204, No. 10 ( 2007-10-01), p. 2439-2448
    Abstract: Activated protein C (APC) reduces mortality of severe sepsis patients but increases the risk of serious bleeding. APC exerts anticoagulant activity by proteolysis of factors Va/VIIIa. APC also exerts antiinflammatory and antiapoptotic effects and stabilizes endothelial barrier function by APC-initiated cell signaling that requires two receptors, endothelial cell protein C receptor (EPCR) and protease-activated receptor 1 (PAR1). The relative importance of APC's various activities for efficacy in sepsis is unknown. We used protein engineering of mouse APC and genetically altered mice to clarify mechanisms for the efficacy of APC in mouse sepsis models. Mortality reduction in LPS-induced endotoxemia required the enzymatic active site of APC, EPCR, and PAR-1, highlighting a key role for APC's cytoprotective actions. A recombinant APC variant with normal signaling but & lt;10% anticoagulant activity (5A-APC) was as effective as wild-type APC in reducing mortality after LPS challenge, and enhanced the survival of mice subjected to peritonitis induced by gram-positive or -negative bacteria or to polymicrobial peritoneal sepsis triggered by colon ascendens stent implantation. Thus, APC's efficacy in severe sepsis is predominantly based on EPCR- and PAR1-dependent cell signaling, and APC variants with normal cell signaling but reduced anticoagulant activities retain efficacy while reducing the risk of bleeding.
    Type of Medium: Online Resource
    ISSN: 1540-9538 , 0022-1007
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2007
    detail.hit.zdb_id: 1477240-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Rockefeller University Press ; 2007
    In:  The Journal of Experimental Medicine Vol. 204, No. 5 ( 2007-05-14), p. 1049-1056
    In: The Journal of Experimental Medicine, Rockefeller University Press, Vol. 204, No. 5 ( 2007-05-14), p. 1049-1056
    Abstract: We describe a mouse model of fetal loss in factor V Leiden (FvL) mothers in which fetal loss is triggered when the maternal prothrombotic state coincides with fetal gene defects that reduce activation of the protein C anticoagulant pathway within the placenta. Fetal loss is caused by disruption of placental morphogenesis at the stage of labyrinth layer formation and occurs in the absence of overt placental thrombosis, infarction, or perfusion defects. Platelet depletion or elimination of protease-activated receptor 4 (Par4) from the mother allows normal placentation and prevents fetal loss. These findings establish a cause–effect relationship for the observed epidemiologic association between maternal FvL status and fetal loss and identify fetal gene defects as risk modifiers of pregnancy failure in prothrombotic mothers. Pregnancy failure is mediated by Par4-dependent activation of maternal platelets at the fetomaternal interface and likely involves a pathogenic pathway independent of occlusive thrombosis. Our results further demonstrate that the interaction of two given thrombosis risk factors produces markedly disparate consequences on disease manifestation (i.e., thrombosis or pregnancy loss), depending on the vascular bed in which this interaction occurs.
    Type of Medium: Online Resource
    ISSN: 1540-9538 , 0022-1007
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2007
    detail.hit.zdb_id: 1477240-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2001
    In:  The Journal of the Acoustical Society of America Vol. 109, No. 5_Supplement ( 2001-05-01), p. 2499-2500
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 109, No. 5_Supplement ( 2001-05-01), p. 2499-2500
    Abstract: David Crighton had a long-standing interest in how the results of Orszag and Crow [Stud. Appl. Math. 49, 167–181 (1970)], for the instability of a vortex sheet leaving a zero-thickness trailing edge which separates a uniform stream from a fliud at rest, would be modified by creating a solid right-angled corner that restricts the stationary unperturbed flow to a quadrant. The Wiener–Hopf technique cannot be applied to this problem which, having wedge-shaped regions, is amenable to Mellin transforms. The matching conditions at the vortex sheet yield a pair of functional difference equations whose solution in terms of the Barnes double gamma function is achieved after doubling their order. Then, local series expansions valid near and far from the corner enable the appropriate pole structure to be identified and the arbitrary periodic functions to be determined. The resu lts are applied to instability wave excitation by an acoustic wave incident on the trailing edge region.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2001
    detail.hit.zdb_id: 1461063-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Society for Microbiology ; 2001
    In:  Journal of Bacteriology Vol. 183, No. 6 ( 2001-03-15), p. 2125-2131
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 183, No. 6 ( 2001-03-15), p. 2125-2131
    Abstract: Pseudomonas aeruginosa is able to use nitrate for both assimilation and anaerobic respiration. One set of genes, designated snr (for “shared nitrate reduction”), have been recently cloned and partially characterized. In this study, we demonstrate that the snr-1 gene encodes a predicted 52.5-kDa protein that is 82% similar to a unique cytochrome c of Desulfomonile tiedjei DCB-1. Importantly, the Snr-1 protein sequence of P. aeruginosa differed from that of the cytochrome c of D. tiedjei primarily in the first 25 amino acids, which are required for membrane attachment in D. tiedjei . In P. aeruginosa , the Snr-1 protein hydropathy profile indicates that it is a soluble protein. An isogenic snr-1 ::Gm insertional mutant was unable to grow aerobically with nitrate as a sole nitrogen source or anaerobically with nitrate as an electron acceptor. Complementation of the snr-1 ::Gm mutant with the snr-1 gene restored the wild-type phenotypes. Interestingly, anaerobic growth rates were significantly higher in the snr-1 mutant harboring a multicopy plasmid containing snr-1 . In contrast, aerobic growth rates of the restored mutant using nitrate as the sole nitrogen source were similar to those of the wild type. Transcriptional lacZ fusions demonstrated that snr-1 was not regulated by molybdate, oxygen, or nitrate.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2001
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Nature Medicine, Springer Science and Business Media LLC, Vol. 18, No. 7 ( 2012-7), p. 1123-1129
    Type of Medium: Online Resource
    ISSN: 1078-8956 , 1546-170X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2012
    detail.hit.zdb_id: 1484517-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 112, No. 13 ( 2008-12-15), p. 4905-4914
    Abstract: The loss of Gimap5 (GTPase of the immune-associated protein 5) gene function is the underlying cause of lymphopenia and autoimmune diabetes in the BioBreeding (BB) rat. The in vivo function of murine gimap5 is largely unknown. We show that selective gene ablation of the mouse gimap5 gene impairs the final intrathymic maturation of CD8 and CD4 T cells and compromises the survival of postthymic CD4 and CD8 cells, replicating findings in the BB rat model. In addition, gimap5 deficiency imposes a block of natural killer (NK)- and NKT-cell differentiation. Development of NK/NKT cells is restored on transfer of gimap5−/− bone marrow into a wild-type environment. Mice lacking gimap5 have a median survival of 15 weeks, exhibit chronic hepatic hematopoiesis, and in later stages show pronounced hepatocyte apoptosis, leading to liver failure. This pathology persists in a Rag2-deficient background in the absence of mature B, T, or NK cells and cannot be adoptively transferred by transplanting gimap5−/− bone marrow into wild-type recipients. We conclude that mouse gimap5 is necessary for the survival of peripheral T cells, NK/NKT-cell development, and the maintenance of normal liver function. These functions involve cell-intrinsic as well as cell-extrinsic mechanisms.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 108, No. 11 ( 2006-11-16), p. 1-1
    Abstract: Recombinant wild type (wt) activated protein C (APC) reduces patient mortality in severe sepsis and multi-organ failure. APC can exert both anticoagulant activity and direct cytoprotective effects on cells (anti-inflammatory, anti-apoptotic, endothelial barrier stabilization, etc.). The contribution of distinct APC activities to the overall therapeutic efficacy in septic patients is unknown. Lethal mouse endotoxemia (i.p. LPS administration) and bacterial sepsis (i.p. Staphylococcus aureus) models were used to clarify mechanisms for APC’s beneficial mortality reduction effects and to distinguish the relative importance of APC anticoagulant effects vs. APC direct effects on cells. Murine rec wtAPC (APC) was administered as bolus plus i.v. infusion (over & lt; 2 hr) in total doses ranging from 0.2 to 0.04 mg/kg and was given coincident with or at times up to 3 hr after challenge. Following induction of LPS-mediated septicemia in normal mice, APC markedly reduced mortality (eg., from 50% to 0–10% at LD-50 LPS doses). APC treatment did not alter the extent of circulating inflammatory cytokine levels at 3 or 24 hr after endotoxin exposure. The survival benefit conferred by wt APC infusions was abolished in mice with genetically reduced levels of endothelial protein C receptor (EPCR) ( & lt; 10% of normal) or in mice genetically lacking protease-activated receptor-1 (PAR-1). Murine APC variants with either 3 or 5 Ala substitutions, 3K3A-APC (KKK192-194AAA) or 5A-APC (RR230/231AA + KKK192-194AAA) that had reduced anticoagulant activity (25 % and & lt; 10 % of wt APC, respectively), but normal cytoprotective activities, were as effective as wt APC in reducing mortality after LPS challenge. A murine APC variant lacking proteolytic activity (active site S360A) did not enhance survival after LPS, showing a requirement for APC’s enzymatic activity. Thus, the survival-promoting efficacy of APC in this model requires the enzymatic active site of APC and the presence of two receptors, EPCR and PAR-1, that are known to mediate APC’s in vitro beneficial cytoprotective effects on cells. In a whole bacteria sepsis model, when APC was given to mice at the time of initiation of peritoneal Staphylococcus aureus-induced sepsis and again at 24 hr, wt APC surprisingly increased mortality (100% mortality vs. 50% at LD-50 bacteria dose). In contrast, when 3K3A-APC or 5A-APC variants with attenuated anticoagulant activity was given at 0 and 24 hr, they prevented mortality due to bacterial sepsis (0–10% vs. 50% mortality for saline control at LD-50 dose). This implies that APC’s anticoagulant action might impair beneficial coagulation-dependent host defense mechanisms in early stages of bacterial sepsis whereas the 5A-APC variant, with very low anticoagulant activity but normal cytoprotective activity, might provide beneficial cellular effects to help prevent death during bacterial sepsis. In summary, the full anticoagulant activity of APC is not required for protection against mortality in each of these models. These results highlight the importance of the cellular protein C pathway for APC therapy and suggest that APC variants with reduced anticoagulant action but normal potency for beneficial direct cellular effects merit further evaluation for sepsis therapy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2006
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages