Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Molecules, MDPI AG, Vol. 25, No. 4 ( 2020-02-13), p. 804-
    Abstract: Inhalation of vapors from a hot tea of Eucalyptus camaldulensis Dehnh. leaves is considered by Iraqi–Kurdistan people an effective spasmolytic and antipyretic remedy for the treatment of respiratory diseases. The constituents of volatile fractions isolated by hydrodistillation from dried leaves of the plant collected in Kurdistan were determined by GC-FID and GC-MS analyses. More than 90% components were identified. The most abundant constituents were 1,8-cineole, p-cymene, α-pinene, terpinen-4-ol, aromadendrene, and α-terpineol. The different volatile fractions induced relaxation on rat isolated aortic and tracheal rings in concentration-dependent manner. These effects appeared to be due to a complex interaction between various terpenoid components rather than being only due to the main oil constituent, 1,8-cineole. The KCa channel and the NO pathway were not significantly involved in the relaxation mechanism, while Ca2+ channels played a major role in the spasmolytic effects.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2008644-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    University of Zakho ; 2017
    In:  Science Journal of University of Zakho Vol. 5, No. 2 ( 2017-06-30), p. 162-166
    In: Science Journal of University of Zakho, University of Zakho, Vol. 5, No. 2 ( 2017-06-30), p. 162-166
    Abstract: The monoterpene, α-terpinyle acetate (TA) is a constituent of essential oils present in aromatic plants. Since the role of ion channels and endothelial hyperpolarizing factors in TA induced relaxation in rat’s aorta is unknown, the current study aimed to study the mechanism underlying the vasodilatory effect of TA in isolated aortic rings. Terpinyle acetate induced a potent vasodilation in rat aortic rings with a percentage of relaxation of 63.79 %. The results of the role of K+ channel subtypes in vasorelaxation revealed that both Kv and KATP played a major role since GLIB produced a maximum percent of inhibition in the relaxation produced by TA to 8.91 %; this was followed by 4-AP in which the percent of inhibition reduced to 14.95. On the other hand, Kir played no role in the TA induced vasorelaxation since BaCl2 did not produce any inhibition in aortic relaxation. Furthermore, also L-type Ca2+ channel played no role in TA induced relaxation since the L-type Ca2+ channel inhibitor Nifedipine did not reduce the percent of relaxation. Endothelium also played a considerable role in the induced vasorelaxation since, in denuded aorta, the percent of relaxation was reduced to 36%. Preincubation of the aortic ring with methylene blue, a soluble cGMP inhibitor also significantly reduced the TA induced relaxation to 16.39%. In contrast, preincubation with cyclooxygenase inhibitor Indomethacin did not produce any inhibitory effect on AT induced vasorelaxation. It can be concluded from these novel results that AT induced vasorelaxation involve the activation of KV, KATP channels and at least partly dependent on endothelium via the activation NO-cGMP signal transduction pathway.
    Type of Medium: Online Resource
    ISSN: 2663-6298 , 2663-628X
    Language: Unknown
    Publisher: University of Zakho
    Publication Date: 2017
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Cardiovascular Research, Oxford University Press (OUP), Vol. 119, No. 7 ( 2023-07-04), p. 1509-1523
    Abstract: Specific fibroblast markers and in-depth heterogeneity analysis are currently lacking, hindering functional studies in cardiovascular diseases (CVDs). Here, we established cell-type markers and heterogeneity in murine and human arteries and studied the adventitial fibroblast response to CVD and its risk factors hypercholesterolaemia and ageing. Methods and results Murine aorta single-cell RNA-sequencing analysis of adventitial mesenchymal cells identified fibroblast-specific markers. Immunohistochemistry and flow cytometry validated platelet-derived growth factor receptor alpha (PDGFRA) and dipeptidase 1 (DPEP1) across human and murine aorta, carotid, and femoral arteries, whereas traditional markers such as the cluster of differentiation (CD)90 and vimentin also marked transgelin+ vascular smooth muscle cells. Next, pseudotime analysis showed multiple fibroblast clusters differentiating along trajectories. Three trajectories, marked by CD55 (Cd55+), Cxcl chemokine 14 (Cxcl14+), and lysyl oxidase (Lox+), were reproduced in an independent RNA-seq dataset. Gene ontology (GO) analysis showed divergent functional profiles of the three trajectories, related to vascular development, antigen presentation, and/or collagen fibril organization, respectively. Trajectory-specific genes included significantly more genes with known genome-wide associations (GWAS) to CVD than expected by chance, implying a role in CVD. Indeed, differential regulation of fibroblast clusters by CVD risk factors was shown in the adventitia of aged C57BL/6J mice, and mildly hypercholesterolaemic LDLR KO mice on chow by flow cytometry. The expansion of collagen-related CXCL14+ and LOX+ fibroblasts in aged and hypercholesterolaemic aortic adventitia, respectively, coincided with increased adventitial collagen. Immunohistochemistry, bulk, and single-cell transcriptomics of human carotid and aorta specimens emphasized translational value as CD55+, CXCL14+ and LOX+ fibroblasts were observed in healthy and atherosclerotic specimens. Also, trajectory-specific gene sets are differentially correlated with human atherosclerotic plaque traits. Conclusion We provide two adventitial fibroblast-specific markers, PDGFRA and DPEP1, and demonstrate fibroblast heterogeneity in health and CVD in humans and mice. Biological relevance is evident from the regulation of fibroblast clusters by age and hypercholesterolaemia in vivo, associations with human atherosclerotic plaque traits, and enrichment of genes with a GWAS for CVD.
    Type of Medium: Online Resource
    ISSN: 0008-6363 , 1755-3245
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1499917-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Cellular Physiology, Wiley, Vol. 234, No. 4 ( 2019-04), p. 3538-3554
    Abstract: The neurotransmitter glutamate increases cerebral blood flow by activating postsynaptic neurons and presynaptic glial cells within the neurovascular unit. Glutamate does so by causing an increase in intracellular Ca 2+ concentration ([Ca 2+ ] i ) in the target cells, which activates the Ca 2+ /Calmodulin‐dependent nitric oxide (NO) synthase to release NO. It is unclear whether brain endothelial cells also sense glutamate through an elevation in [Ca 2+ ] i and NO production. The current study assessed whether and how glutamate drives Ca 2+ ‐dependent NO release in bEND5 cells, an established model of brain endothelial cells. We found that glutamate induced a dose‐dependent oscillatory increase in [Ca 2+ ] i , which was maximally activated at 200 μM and inhibited by α‐methyl‐4‐carboxyphenylglycine, a selective blocker of Group 1 metabotropic glutamate receptors. Glutamate‐induced intracellular Ca 2+ oscillations were triggered by rhythmic endogenous Ca 2+ mobilization and maintained over time by extracellular Ca 2+ entry. Pharmacological manipulation revealed that glutamate‐induced endogenous Ca 2+ release was mediated by InsP 3 ‐sensitive receptors and nicotinic acid adenine dinucleotide phosphate (NAADP) gated two‐pore channel 1. Constitutive store‐operated Ca 2+ entry mediated Ca 2+ entry during ongoing Ca 2+ oscillations. Finally, glutamate evoked a robust, although delayed increase in NO levels, which was blocked by pharmacologically inhibition of the accompanying intracellular Ca 2+ signals. Of note, glutamate induced Ca 2+ ‐dependent NO release also in hCMEC/D3 cells, an established model of human brain microvascular endothelial cells. This investigation demonstrates for the first time that metabotropic glutamate‐induced intracellular Ca 2+ oscillations and NO release have the potential to impact on neurovascular coupling in the brain.
    Type of Medium: Online Resource
    ISSN: 0021-9541 , 1097-4652
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 1478143-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages