Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    SAGE Publications ; 2021
    In:  Polymers and Polymer Composites Vol. 29, No. 9_suppl ( 2021-11), p. S296-S305
    In: Polymers and Polymer Composites, SAGE Publications, Vol. 29, No. 9_suppl ( 2021-11), p. S296-S305
    Abstract: The aim of the present study was to investigate and compare the quantity of residual monomers leached from the bulk-fill composites with different compositions polymerized at varying layer thickness. Three bulk-fill (X-tra-fil, Beautifil Bulk Restorative, Fill-Up) and a nanohybrid composite (Filtek Z550) were used for the study. The composite resin samples were prepared with a stainless steel mold. For each composite, two groups were constructed. The samples in the first group were prepared using the 2 + 2 mm layering technique. In the second group, the composite samples were applied as a 4 mm-thick one layer and polymerized. Then, each composite samples were kept in a 75% ethanol solution and residual monomers released from composite resins were analyzed with an HPLC device after 24hour and 1 month. The data were analyzed using Kruskal-Wallis and Mann-Whitney U tests. Except the Fill-Up, all of residual monomer elution from the bulk-fill composites was significantly affected by the layer thickness (p 〈 0.05). The greatest monomer release was detected at 1 month after polymerization as a single 4 mm layer for Beautifil Bulk Restorative. Fill-Up composite showed similar residual monomer release in polymerization at different layer thicknesses compared to other composite resins. In the 2 + 2 mm layering technique, the least monomer elution was detected in the Filtek Z550 composite group. While Bis-GMA was the most released monomer in X-tra fil composite, UDMA was the most released monomer in all other composite resins. During polymerization of the bulk-fill composite, the layer thickness of the composite applied may affect the amount of residual monomers released from the composite resins. Conventional composites may release less monomer than bulk-fill composites when used with layering.
    Type of Medium: Online Resource
    ISSN: 0967-3911 , 1478-2391
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2021
    detail.hit.zdb_id: 2099644-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 110, No. 11 ( 2007-11-16), p. 4920-4920
    Abstract: Mobilized peripheral blood stem and progenitor cells are nowadays widely used for transplantation of hematopoietic stem and progenitor cells (PBSCT). These cells can be mobilized into the peripheral blood with cytotoxic chemotherapy, cytokines or both. Currently, G-CSF is most frequently used due to its high efficacy and lack of serious toxicity. However, a serious patient-to-patient variation in the yield of peripheral blood stem and progenitor cells is a feature common of all mobilizations schemes. Therefore, factors determining the collection efficacy have been identified for G-CSF mobilization. Recently a polyethylenglycole-conjugated G-CSF (Peg-G-CSF) has been introduced which has a 12-fold longer half-life than the original compound and therefore leads to long-lasting G-CSF serum-levels after a single injection. Studies on Peg-G-CSF included only small cohorts and no attempts have been made to identify factors influencing the mobilization of blood stem and progenitor cells. Therefore, we retrospectively analyzed 101 unselected patients (66 with multiple myeloma, 26 with non-Hodgkin-lymphoma, 7 with Hodgkin’s disease, 1 with Ewing sarcoma, 1 with malignant germ cell tumor). 27% of patients had active disease, while all others where at least in partial remission after conventional chemotherapy. Patients were treated with a broad range of chemotherapy regimens. The number of cytotoxic chemotherapy cycles administered prior to the mobilization therapy ranged from 1 to 11 (median 4). Mobilization chemotherapy was followed by 6 mg or 12 mg Peg-G-CSF (median 6 mg). Median peripheral blood CD34+ cell maximum in all patients was 65.3/μl (range 0.2–1084 per μl). 12 mg Peg-G-CSF led to a significantly earlier CD34+ cell maximum in the peripheral blood compared to 6 mg Peg-G-CSF (median 13 days vs 15 days, respectively; p=0.01). Overall, a median yield of 8.5 x 10^6 CD34+ cells/kg bodyweight (range 0.2–72.4 x 10^6) was reached with a single apheresis (median, range 1–4). To search for predictors of hematopoietic stem and progenitor cell mobilization, multiple regression analysis was used and revealed CD34+ cell count/μl peripheral blood at the day of apheresis and the processed blood volume during apheresis as predictors for the CD34+ cell yield per kilogram bodyweight. Age, sex, disease type and status were not significantly related to the CD34+ cell count/μl peripheral blood nor the CD34+ cell yield. Interestingly, the number of previous chemotherapy cycles was correlated with the CD34+ cell maximum (p=0.027) with fewer chemotherapy cycles leading to a higher peripheral blood CD34+ cell count and vice versa. In contrast, radiation therapy prior to CD34+ cell mobilization led to a significantly later occurrence of the CD34+ cell maximum in the peripheral blood. Our results confirm the feasibility and efficacy of PBPC mobilization with single dose Peg-G-CSF after cytotoxic chemotherapy shown in previous clinical trials analyzing the largest patient cohort to date and predictors for successful stem cell mobilization with Peg-G-CSF could be identified.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2007
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages