Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 380, No. 6643 ( 2023-04-28)
    Abstract: Comparative genomics provides valuable insights into gene function, phylogeny, molecular evolution, and associations between phenotypic and genomic differences. Such analyses require knowledge about which genes originated from a speciation event (orthologs) or from a duplication event (paralogs). Existing methods to detect orthologs in turn require knowledge of the location of genes in the genome (gene annotation), which is itself a challenging problem, resulting in a growing gap between sequenced and annotated genomes. RATIONALE We developed TOGA (Tool to infer Orthologs from Genome Alignments), a genomics method that integrates orthology inference and gene annotation. TOGA takes as input a gene annotation of a reference species (e.g., human, mouse, or chicken) and a whole-genome alignment between the reference and a query genome (e.g., other mammals or birds). It infers orthologous gene loci in the query genome, annotates and classifies orthologous genes, detects gene losses and duplications, and generates protein and codon alignments. Orthology detection relies on the principle that orthologous sequences are generally more similar to each other than to paralogous sequences. Whereas existing methods work with annotated protein-coding sequences, TOGA extends this similarity principle to non-exonic regions (introns and intergenic regions) and uses machine learning to detect orthologous gene loci based on alignments of intronic and intergenic regions. RESULTS We demonstrate that TOGA’s machine learning classifier detects orthologous gene loci with a very high accuracy, and also works for orthologous genes that underwent translocations or inversions. TOGA improves ortholog detection and comprehensively annotates conserved genes, even if transcriptomics data are available. Although homology-based methods such as TOGA cannot annotate orthologs of genes that are not present in the reference, we show that reference bias can be effectively counteracted by integrating annotations generated with multiple reference species. TOGA can also be applied to highly fragmented genome assemblies, where genes are often split across scaffolds. By accurately identifying and joining orthologous gene fragments, TOGA annotates entire genes and thus increases the utility of fragmented genomes for comparative analyses. TOGA’s gene classification explicitly distinguishes between genes with missing sequences (indicative of assembly incompleteness) and genes with inactivating mutations (potentially indicative of base errors). We show that this classification provides a superior benchmark for assembly completeness and quality. As genomes are generated at an increasing rate, annotation and orthology inference methods that can handle hundreds or thousands of genomes are needed. TOGA’s reference species methodology scales linearly with the number of query species. By applying TOGA with human and mouse as references to 488 placental mammal assemblies and using chicken as a reference for 501 bird assemblies, we created large comparative resources for mammals and birds that comprise gene annotations, ortholog sets, lists of inactivated genes, and multiple codon alignments. CONCLUSION TOGA provides a general strategy to cope with the annotation and orthology inference bottleneck. We envision three major uses. First, TOGA enables phylogenomic analyses of orthologous genes and screens for gene changes (e.g., selection, loss, and duplication) that are associated with phenotypic differences. Second, TOGA provides annotations of genes that are conserved in newly sequenced genomes, which can be supplemented with transcriptomics data to detect lineage-specific genes or exons. Finally, TOGA’s gene classification provides a powerful genome assembly quality benchmark. A different paradigm for orthology inference. Orthologous, but not paralogous, genes have partially aligning intronic and intergenic regions. TOGA uses this principle to infer orthologous gene loci and integrates orthology inference with gene annotation. Using a reference species, TOGA can be applied to hundreds of aligned query genomes to provide rich comparative genomics resources.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature, Springer Science and Business Media LLC, Vol. 583, No. 7817 ( 2020-07-23), p. 578-584
    Abstract: Bats possess extraordinary adaptations, including flight, echolocation, extreme longevity and unique immunity. High-quality genomes are crucial for understanding the molecular basis and evolution of these traits. Here we incorporated long-read sequencing and state-of-the-art scaffolding protocols 1 to generate, to our knowledge, the first reference-quality genomes of six bat species ( Rhinolophus ferrumequinum , Rousettus aegyptiacus , Phyllostomus discolor , Myotis myotis , Pipistrellus kuhlii and Molossus molossus ). We integrated gene projections from our ‘Tool to infer Orthologs from Genome Alignments’ (TOGA) software with de novo and homology gene predictions as well as short- and long-read transcriptomics to generate highly complete gene annotations. To resolve the phylogenetic position of bats within Laurasiatheria, we applied several phylogenetic methods to comprehensive sets of orthologous protein-coding and noncoding regions of the genome, and identified a basal origin for bats within Scrotifera. Our genome-wide screens revealed positive selection on hearing-related genes in the ancestral branch of bats, which is indicative of laryngeal echolocation being an ancestral trait in this clade. We found selection and loss of immunity-related genes (including pro-inflammatory NF-κB regulators) and expansions of anti-viral APOBEC3 genes, which highlights molecular mechanisms that may contribute to the exceptional immunity of bats. Genomic integrations of diverse viruses provide a genomic record of historical tolerance to viral infection in bats. Finally, we found and experimentally validated bat-specific variation in microRNAs, which may regulate bat-specific gene-expression programs. Our reference-quality bat genomes provide the resources required to uncover and validate the genomic basis of adaptations of bats, and stimulate new avenues of research that are directly relevant to human health and disease 1 .
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Genes, MDPI AG, Vol. 13, No. 5 ( 2022-04-26), p. 766-
    Abstract: Relationships among laurasiatherian clades represent one of the most highly disputed topics in mammalian phylogeny. In this study, we attempt to disentangle laurasiatherian interordinal relationships using two independent genome-level approaches: (1) quantifying retrotransposon presence/absence patterns, and (2) comparisons of exon datasets at the levels of nucleotides and amino acids. The two approaches revealed contradictory phylogenetic signals, possibly due to a high level of ancestral incomplete lineage sorting. The positions of Eulipotyphla and Chiroptera as the first and second earliest divergences were consistent across the approaches. However, the phylogenetic relationships of Perissodactyla, Cetartiodactyla, and Ferae, were contradictory. While retrotransposon insertion analyses suggest a clade with Cetartiodactyla and Ferae, the exon dataset favoured Cetartiodactyla and Perissodactyla. Future analyses of hitherto unsampled laurasiatherian lineages and synergistic analyses of retrotransposon insertions, exon and conserved intron/intergenic sequences might unravel the conflicting patterns of relationships in this major mammalian clade.
    Type of Medium: Online Resource
    ISSN: 2073-4425
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527218-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Molecular Biology and Evolution, Oxford University Press (OUP)
    Abstract: The blue whale, Balaenoptera musculus, is the largest animal known to have ever existed, making it an important case study in longevity and resistance to cancer. To further this and other blue whale-related research, we report a reference-quality, long-read-based genome assembly of this fascinating species. We assembled the genome from PacBio long reads and utilized Illumina/10X, optical maps, and Hi-C data for scaffolding, polishing, and manual curation. We also provided long read RNA-seq data to facilitate the annotation of the assembly by NCBI and Ensembl. Additionally, we annotated both haplotypes using TOGA and measured the genome size by flow cytometry. We then compared the blue whale genome with other cetaceans and artiodactyls, including vaquita (Phocoena sinus), the world’s smallest cetacean, to investigate blue whale’s unique biological traits. We found a dramatic amplification of several genes in the blue whale genome resulting from a recent burst in segmental duplications, though the possible connection between this amplification and giant body size requires further study. We also discovered sites in the insulin-like growth factor-1 gene correlated with body size in cetaceans. Finally, using our assembly to examine the heterozygosity and historical demography of Pacific and Atlantic blue whale populations, we found that the genomes of both populations are highly heterozygous and that their genetic isolation dates to the last interglacial period. Taken together, these results indicate how a high-quality, annotated blue whale genome will serve as an important resource for biology, evolution, and conservation research.
    Type of Medium: Online Resource
    ISSN: 0737-4038 , 1537-1719
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2024
    detail.hit.zdb_id: 2024221-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Genome Biology, Springer Science and Business Media LLC, Vol. 24, No. 1 ( 2023-10-02)
    Abstract: Interactive graphical genome browsers are essential tools in genomics, but they do not contain all the recent genome assemblies. We create Genome Archive (GenArk) collection of UCSC Genome Browsers from NCBI assemblies. Built on our established track hub system, this enables fast visualization of annotations. Assemblies come with gene models, repeat masks, BLAT, and in silico PCR. Users can add annotations via track hubs and custom tracks. We can bulk-import third-party resources, demonstrated with TOGA and Ensembl gene models for hundreds of assemblies. Three thousand two hundred sixty-nine GenArk assemblies are listed at https://hgdownload.soe.ucsc.edu/hubs/ and can be searched for on the Genome Browser gateway page.
    Type of Medium: Online Resource
    ISSN: 1474-760X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2040529-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2019
    In:  Genome Biology and Evolution Vol. 11, No. 11 ( 2019-11-01), p. 3256-3268
    In: Genome Biology and Evolution, Oxford University Press (OUP), Vol. 11, No. 11 ( 2019-11-01), p. 3256-3268
    Abstract: To fulfill their physiological functions, bile acids are conjugated with amino acids. In humans, conjugation is catalyzed by bile acid coenzyme A: amino acid N-acyltransferase (BAAT), an enzyme with a highly conserved catalytic triad in its active site. Interestingly, the conjugated amino acids are highly variable among mammals, with some species conjugating bile acids with both glycine and taurine, whereas others conjugate only taurine. The genetic origin of these bile acid conjugation differences is unknown. Here, we tested whether mutations in BAAT’s catalytic triad could explain bile acid conjugation differences. Our comparative analysis of 118 mammals first revealed that the ancestor of placental mammals and marsupials possessed two genes, BAAT and BAATP1, that arose by a tandem duplication. This duplication was followed by numerous gene losses, including BAATP1 in humans. Losses of either BAAT or BAATP1 largely happened in a reciprocal fashion, suggesting that a single conjugating enzyme is generally sufficient for mammals. In intact BAAT and BAATP1 genes, we observed multiple changes in the catalytic triad between Cys and Ser residues. Surprisingly, although mutagenesis experiments with the human enzyme have shown that replacing Cys for Ser greatly diminishes the glycine-conjugating ability, across mammals we found that this residue provides little power in predicting the experimentally measured amino acids that are conjugated with bile acids. This suggests that the mechanism of BAAT’s enzymatic function is incompletely understood, despite relying on a classic catalytic triad. More generally, our evolutionary analysis indicates that results of mutagenesis experiments may not easily be extrapolatable to other species.
    Type of Medium: Online Resource
    ISSN: 1759-6653
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2495328-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 8, No. 12 ( 2022-03-25)
    Abstract: Genes that are specifically lost in the common vampire bat provide new insights into the genomic adaptations to blood feeding.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 2810933-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 380, No. 6643 ( 2023-04-28)
    Abstract: A major challenge in genomics is discerning which bases among billions alter organismal phenotypes and affect health and disease risk. Evidence of past selective pressure on a base, whether highly conserved or fast evolving, is a marker of functional importance. Bases that are unchanged in all mammals may shape phenotypes that are essential for organismal health. Bases that are evolving quickly in some species, or changed only in species that share an adaptive trait, may shape phenotypes that support survival in specific niches. Identifying bases associated with exceptional capacity for cellular recovery, such as in species that hibernate, could inform therapeutic discovery. RATIONALE The power and resolution of evolutionary analyses scale with the number and diversity of species compared. By analyzing genomes for hundreds of placental mammals, we can detect which individual bases in the genome are exceptionally conserved (constrained) and likely to be functionally important in both coding and noncoding regions. By including species that represent all orders of placental mammals and aligning genomes using a method that does not require designating humans as the reference species, we explore unusual traits in other species. RESULTS Zoonomia’s mammalian comparative genomics resources are the most comprehensive and statistically well-powered produced to date, with a protein-coding alignment of 427 mammals and a whole-genome alignment of 240 placental mammals representing all orders. We estimate that at least 10.7% of the human genome is evolutionarily conserved relative to neutrally evolving repeats and identify about 101 million significantly constrained single bases (false discovery rate 〈 0.05). We cataloged 4552 ultraconserved elements at least 20 bases long that are identical in more than 98% of the 240 placental mammals. Many constrained bases have no known function, illustrating the potential for discovery using evolutionary measures. Eighty percent are outside protein-coding exons, and half have no functional annotations in the Encyclopedia of DNA Elements (ENCODE) resource. Constrained bases tend to vary less within human populations, which is consistent with purifying selection. Species threatened with extinction have few substitutions at constrained sites, possibly because severely deleterious alleles have been purged from their small populations. By pairing Zoonomia’s genomic resources with phenotype annotations, we find genomic elements associated with phenotypes that differ between species, including olfaction, hibernation, brain size, and vocal learning. We associate genomic traits, such as the number of olfactory receptor genes, with physical phenotypes, such as the number of olfactory turbinals. By comparing hibernators and nonhibernators, we implicate genes involved in mitochondrial disorders, protection against heat stress, and longevity in this physiologically intriguing phenotype. Using a machine learning–based approach that predicts tissue-specific cis - regulatory activity in hundreds of species using data from just a few, we associate changes in noncoding sequence with traits for which humans are exceptional: brain size and vocal learning. CONCLUSION Large-scale comparative genomics opens new opportunities to explore how genomes evolved as mammals adapted to a wide range of ecological niches and to discover what is shared across species and what is distinctively human. High-quality data for consistently defined phenotypes are necessary to realize this potential. Through partnerships with researchers in other fields, comparative genomics can address questions in human health and basic biology while guiding efforts to protect the biodiversity that is essential to these discoveries. Comparing genomes from 240 species to explore the evolution of placental mammals. Our new phylogeny (black lines) has alternating gray and white shading, which distinguishes mammalian orders (labeled around the perimeter). Rings around the phylogeny annotate species phenotypes. Seven species with diverse traits are illustrated, with black lines marking their branch in the phylogeny. Sequence conservation across species is described at the top left. IMAGE CREDIT: K. MORRILL
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Molecular Biology and Evolution, Oxford University Press (OUP), Vol. 40, No. 5 ( 2023-05-02)
    Abstract: Horizontal transfer of transposable elements (TEs) is an important mechanism contributing to genetic diversity and innovation. Bats (order Chiroptera) have repeatedly been shown to experience horizontal transfer of TEs at what appears to be a high rate compared with other mammals. We investigated the occurrence of horizontally transferred (HT) DNA transposons involving bats. We found over 200 putative HT elements within bats; 16 transposons were shared across distantly related mammalian clades, and 2 other elements were shared with a fish and two lizard species. Our results indicate that bats are a hotspot for horizontal transfer of DNA transposons. These events broadly coincide with the diversification of several bat clades, supporting the hypothesis that DNA transposon invasions have contributed to genetic diversification of bats.
    Type of Medium: Online Resource
    ISSN: 0737-4038 , 1537-1719
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2024221-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 380, No. 6643 ( 2023-04-28)
    Abstract: Diverse phenotypes, including large brains relative to body size, group living, and vocal learning ability, have evolved multiple times throughout mammalian history. These shared phenotypes may have arisen repeatedly by means of common mechanisms discernible through genome comparisons. RATIONALE Protein-coding sequence differences have failed to fully explain the evolution of multiple mammalian phenotypes. This suggests that these phenotypes have evolved at least in part through changes in gene expression, meaning that their differences across species may be caused by differences in genome sequence at enhancer regions that control gene expression in specific tissues and cell types. Yet the enhancers involved in phenotype evolution are largely unknown. Sequence conservation–based approaches for identifying such enhancers are limited because enhancer activity can be conserved even when the individual nucleotides within the sequence are poorly conserved. This is due to an overwhelming number of cases where nucleotides turn over at a high rate, but a similar combination of transcription factor binding sites and other sequence features can be maintained across millions of years of evolution, allowing the function of the enhancer to be conserved in a particular cell type or tissue. Experimentally measuring the function of orthologous enhancers across dozens of species is currently infeasible, but new machine learning methods make it possible to make reliable sequence-based predictions of enhancer function across species in specific tissues and cell types. RESULTS To overcome the limits of studying individual nucleotides, we developed the Tissue-Aware Conservation Inference Toolkit (TACIT). Rather than measuring the extent to which individual nucleotides are conserved across a region, TACIT uses machine learning to test whether the function of a given part of the genome is likely to be conserved. More specifically, convolutional neural networks learn the tissue- or cell type–specific regulatory code connecting genome sequence to enhancer activity using candidate enhancers identified from only a few species. This approach allows us to accurately associate differences between species in tissue or cell type–specific enhancer activity with genome sequence differences at enhancer orthologs. We then connect these predictions of enhancer function to phenotypes across hundreds of mammals in a way that accounts for species’ phylogenetic relatedness. We applied TACIT to identify candidate enhancers from motor cortex and parvalbumin neuron open chromatin data that are associated with brain size relative to body size, solitary living, and vocal learning across 222 mammals. Our results include the identification of multiple candidate enhancers associated with brain size relative to body size, several of which are located in linear or three-dimensional proximity to genes whose protein-coding mutations have been implicated in microcephaly or macrocephaly in humans. We also identified candidate enhancers associated with the evolution of solitary living near a gene implicated in separation anxiety and other enhancers associated with the evolution of vocal learning ability. We obtained distinct results for bulk motor cortex and parvalbumin neurons, demonstrating the value in applying TACIT to both bulk tissue and specific minority cell type populations. To facilitate future analyses of our results and applications of TACIT, we released predicted enhancer activity of 〉 400,000 candidate enhancers in each of 222 mammals and their associations with the phenotypes we investigated. CONCLUSION TACIT leverages predicted enhancer activity conservation rather than nucleotide-level conservation to connect genetic sequence differences between species to phenotypes across large numbers of mammals. TACIT can be applied to any phenotype with enhancer activity data available from at least a few species in a relevant tissue or cell type and a whole-genome alignment available across dozens of species with substantial phenotypic variation. Although we developed TACIT for transcriptional enhancers, it could also be applied to genomic regions involved in other components of gene regulation, such as promoters and splicing enhancers and silencers. As the number of sequenced genomes grows, machine learning approaches such as TACIT have the potential to help make sense of how conservation of, or changes in, subtle genome patterns can help explain phenotype evolution. Tissue-Aware Conservation Inference Toolkit (TACIT) associates genetic differences between species with phenotypes. TACIT works by generating open chromatin data from a few species in a tissue related to a phenotype, using the sequences underlying open and closed chromatin regions to train a machine learning model for predicting tissue-specific open chromatin and associating open chromatin predictions across dozens of mammals with the phenotype. [Species silhouettes are from PhyloPic]
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages