Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Insects, MDPI AG, Vol. 11, No. 10 ( 2020-10-20), p. 717-
    Abstract: Animals engage in a plethora of mutualistic interactions with microorganisms that can confer various benefits to their host but can also incur context-dependent costs. The sawtoothed grain beetle Oryzaephilus surinamensis harbors nutritional, intracellular Bacteroidetes bacteria that supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host. Experimental elimination of the symbiont impairs cuticle formation and reduces fitness under desiccation stress but does not disrupt the host’s life cycle. For this study, we first demonstrated that symbiont populations showed the strongest growth at the end of metamorphosis and then declined continuously in males, but not in females. The symbiont loss neither impacted the development time until adulthood nor adult mortality or lifespan. Furthermore, lifetime reproduction was not influenced by the symbiont presence. However, symbiotic females started to reproduce almost two weeks later than aposymbiotic ones. Thus, symbiont presence incurs a metabolic and context-dependent fitness cost to females, probably due to a nutrient allocation trade-off between symbiont growth and sexual maturation. The O. surinamensis symbiosis thereby represents an experimentally amenable system to study eco-evolutionary dynamics under variable selection pressures.
    Type of Medium: Online Resource
    ISSN: 2075-4450
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662247-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Microbiology Vol. 12 ( 2021-9-22)
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 12 ( 2021-9-22)
    Abstract: Many phytophagous insects harbor symbiotic bacteria that can be transmitted vertically from parents to offspring, or acquired horizontally from unrelated hosts or the environment. In the latter case, plants are a potential route for symbiont transfer and can thus foster a tripartite interaction between microbe, insect, and plant. Here, we focus on two bacterial symbionts of the darkling beetle Lagria villosa that belong to the genus Burkholderia ; the culturable strain B. gladioli Lv-StA and the reduced-genome strain Burkholderia Lv-StB. The strains can be transmitted vertically and confer protection to the beetle’s eggs, but Lv-StA can also proliferate in plants, and both symbiont strains have presumably evolved from plant pathogens. Notably, little is known about the role of the environment for the transmission dynamics and the maintenance of the symbionts. Through manipulative assays, we demonstrate the transfer of the symbionts from the beetle to wheat, rice and soybean plants, as well as leaf litter. In addition, we confirm that aposymbiotic larvae can pick up Lv-StA from dry leaves and the symbiont can successfully establish in the beetle’s symbiotic organs. Also, we show that the presence of plants and soil in the environment improves symbiont maintenance. These results indicate that the symbionts of L. villosa beetles are still capable of interacting with plants despite signatures of genome erosion and suggest that a mixed-mode of bacterial transmission is likely key for the persistence of the symbiosis.
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2587354-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages